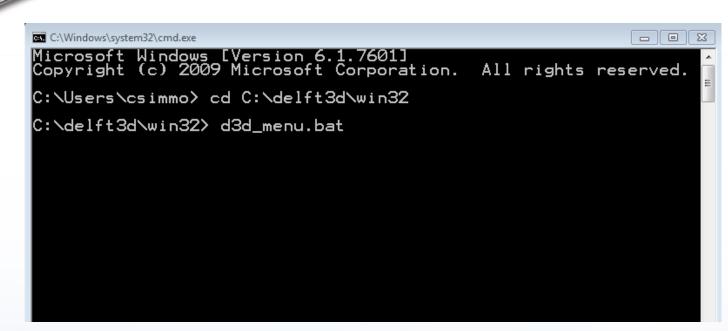
SAND2016-9627 TR

SNL-Delft3D-CEC

3D/2D modeling suite for integral water solutions


Building a Basic Model

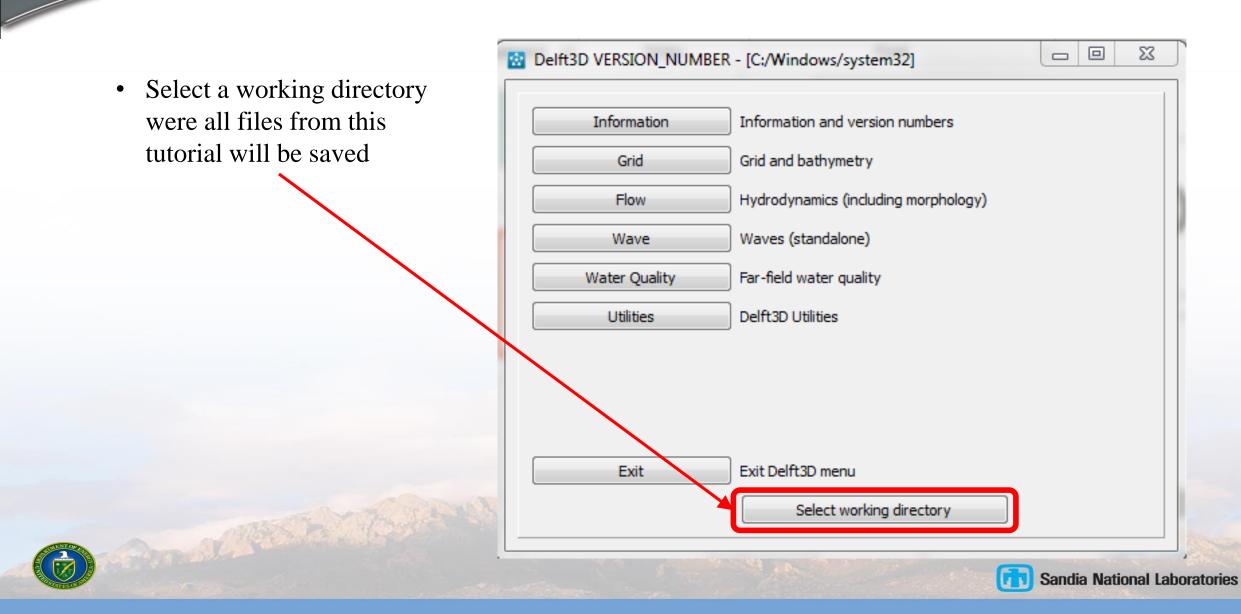
Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

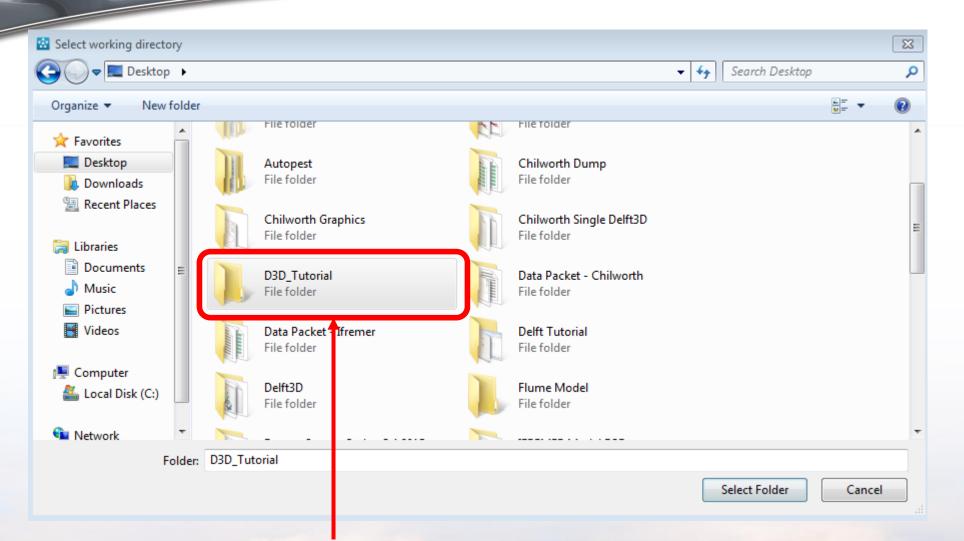
Delft3D initialization

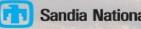
- Using a Windows operation system, start the Delft3D program.
- From the Windows command line, run d3d_menu.bat

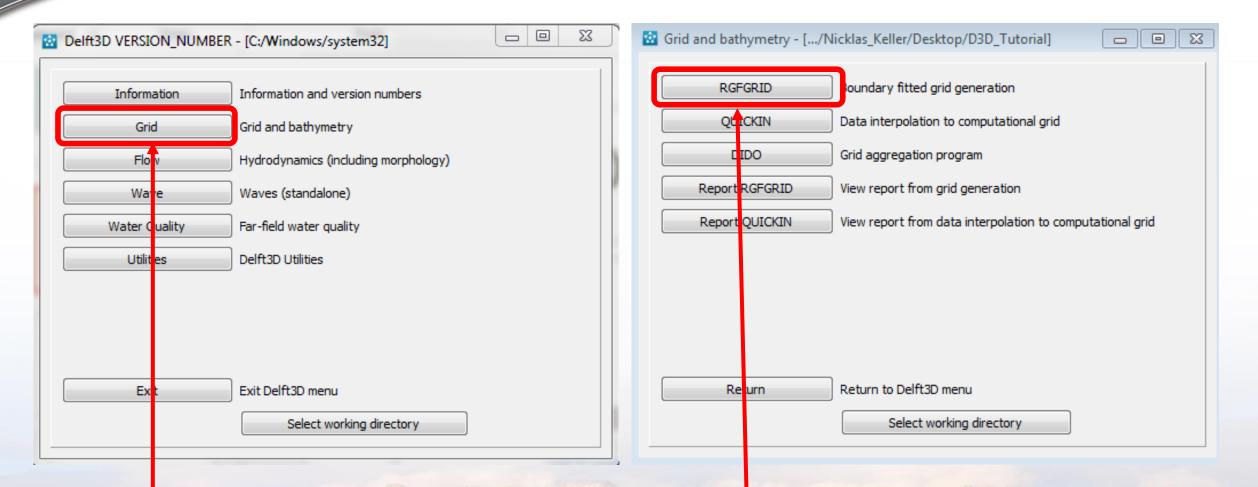
Delft3D Documentation

- SNL-Delft3D-CEC is derived from the original Delft3D FLOW module, thus most of D3D usage can be applied.
 - D3D FLOW Manual :


http://content.oss.deltares.nl/delft3d/manuals/Delft3D-FLOW_User_Manual.pdf


• This tutorial will go into the usage of the turbine module implemented specifically in SNL-Delft3D-CEC.


Setting Things Up



• Create and select a new folder

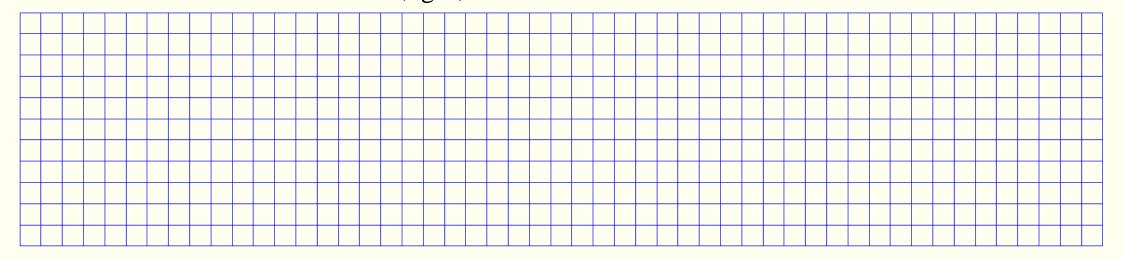
Creating a Grid

- Select Grid

• Select RGFGRID

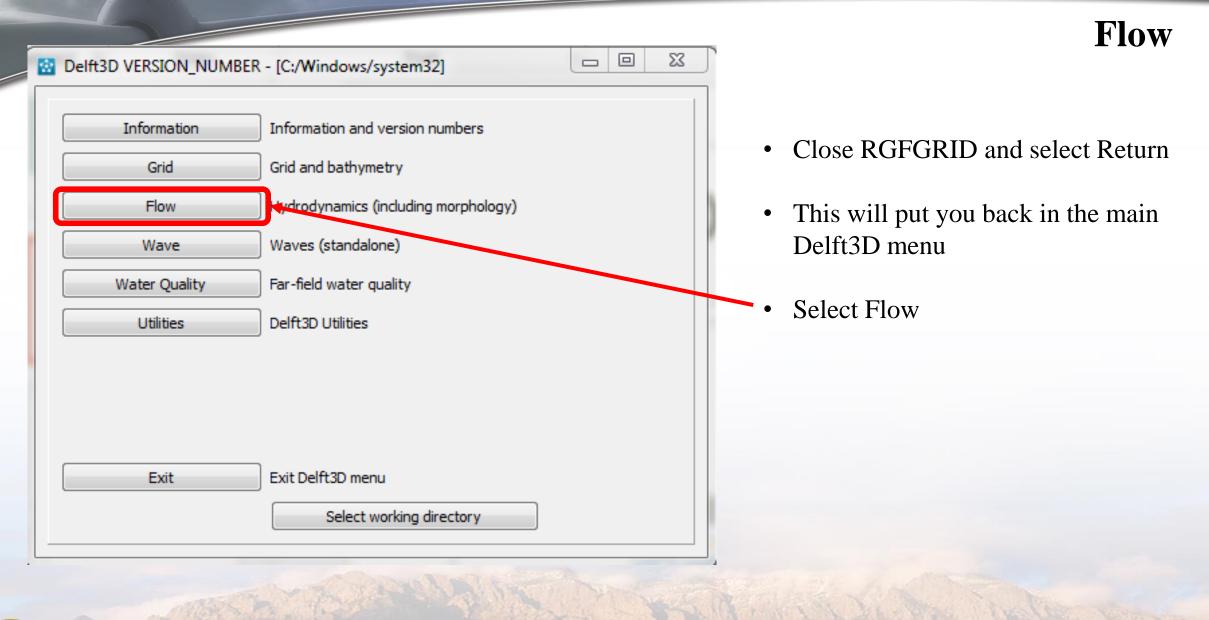
File Edit

Operations View Co-ordinate System Settings Help

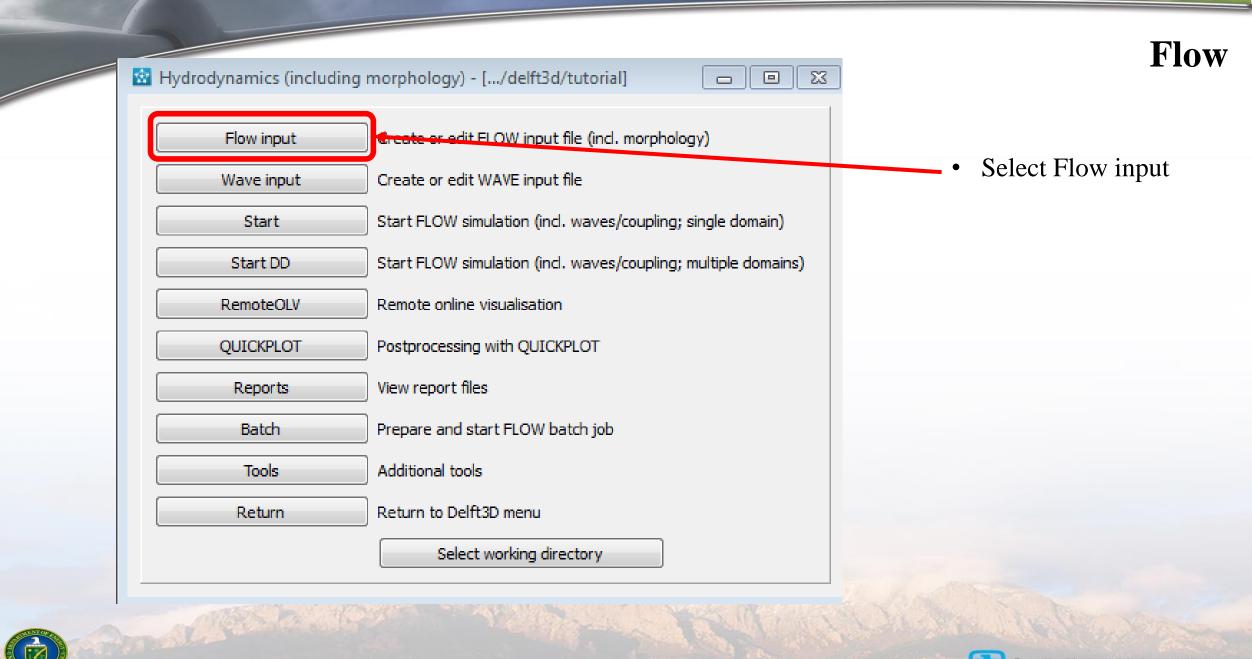

🖴 🗢 🔀 米 🔎 🕀 🔥 🏻 🞯 🞯 🗉 🧮 ト 🛪 ト ア ト 🖽 🗄 🗗 🗷 🗶 🚺 🎟

Number of Gridcells in M-Direction	51
Number of Grid cells in N-Directior	11
Delta X [m]	10
Delta Y [m]	10
Origin X [m]	1
Origin Y [m]	1
Rotation left [deg]	0
Radius of M-Curvature [m]	0
Uniform M-Fraction [-]	1
Maximum Size / Delta X [-]	5
Uniform N-Fraction [-]	1
Maximum Size / Delta Y [-]	5

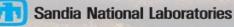
- Select Operations>Create Rectangular or Circular Grid
- We will build a straight flow channel with flow from east to west. It will be 110 m across and 510 m long. We will use an odd number of cells in each direction so that MHK devices can be centered.
- *M*-direction = 51, *N*-direction = 11, Delta *X*, *Y* = 10, 10, (grid spacing) and the Origin *X*, *Y* = 1,1
 - Click OK

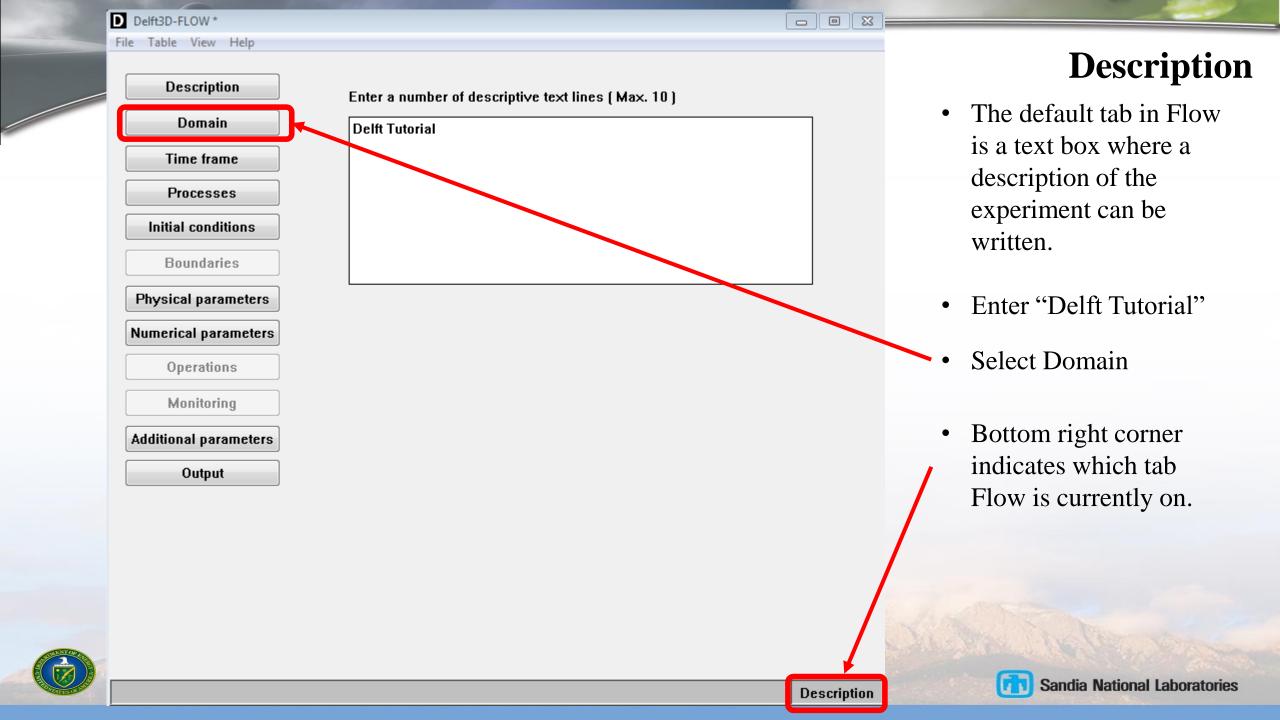


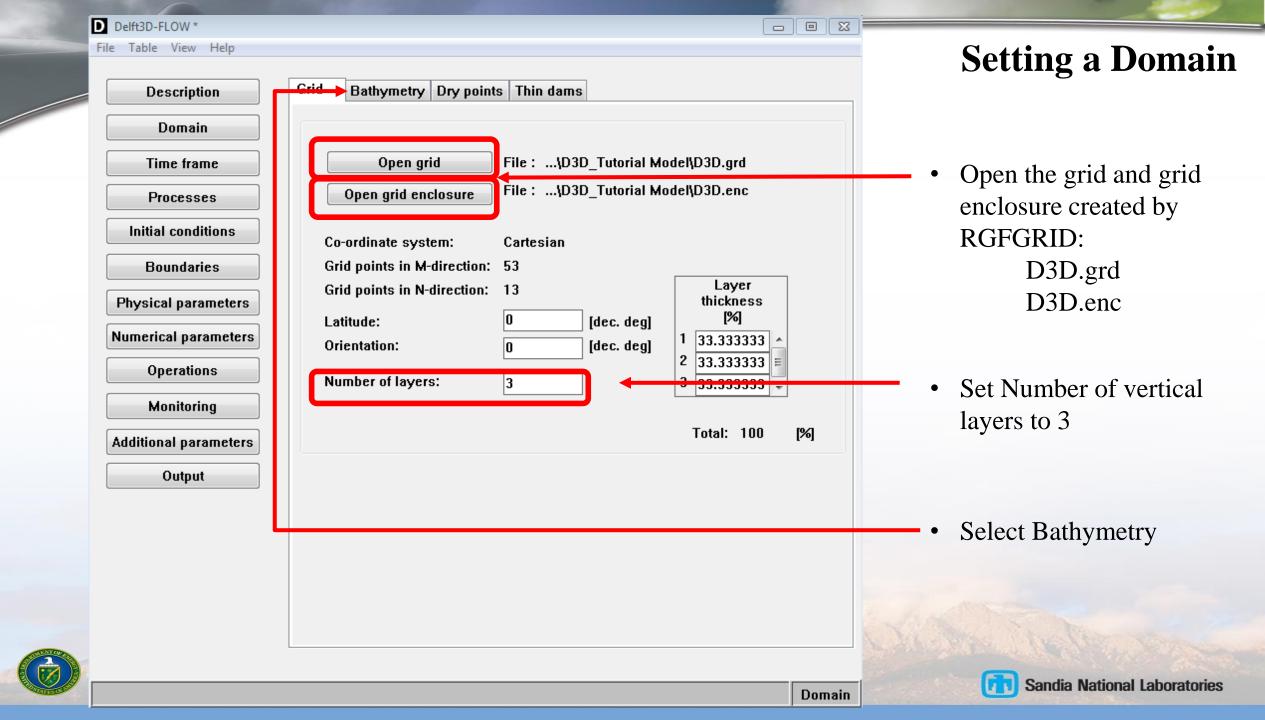
- Save Project as D3D
 - The grid file types created by RGFGRID are .d3d, .grd, and .enc

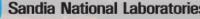

PCEGRID - [51x11]

File

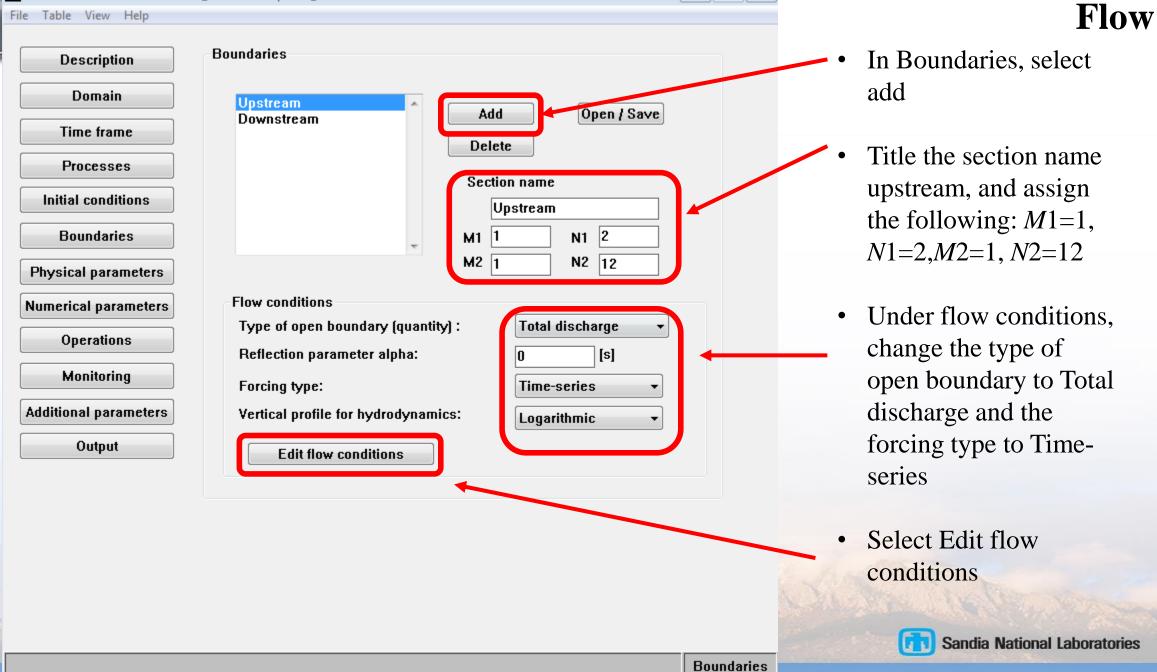








D Delft3D-FLOW *		8
File Table View Help Description	Grid Bathymetry Dry points Thin dams	Setting a Domain
Domain Time frame Processes	Uniform Depth: 9 [m] below reference level File Depth File : Filename unknown	• Set Bathymetry to a Uniform Depth of 9 meters.
Initial conditions Boundaries Physical parameters	© File Open File : Filename unknown Values specified at: O Grid cell centres © Grid cell corners	
Numerical parameters Operations	Cell centre values computed using: Max -	Click on Time frame
Monitoring Additional parameters Output		
	Domain - Bathyn	netry Sandia National Laboratories


	Delft3D-FLOW - C:\Users\csim	mo\Desktop\D3D_Basics\Files\D3D.mdf		
-	File Table View Help			Simulation Time Frame
	Description	Time frame		
	Domain	Reference date	29 07 2015 [dd mm yyyy]	
	Time frame	Simulation start time	29 07 2015 00 00 00 [dd mm yyyy hh mm ss]	 Let's simulate 30
	Processes	Simulation stop time	29 07 2015 00 30 00 [dd mm yyyy hh mm ss]	minutes with a 0.001
Г	Initial conditions	Time step	0.001 [min]	second time step
	Boundaries			
L	Physical parameters	Local time zone (LTZ)	0 +GMT	Click on Initial
	Operations	GMT = Local time - LTZ		Conditions
	Monitoring			
	Additional parameters			
	Output			
				Sandia National Laboratories

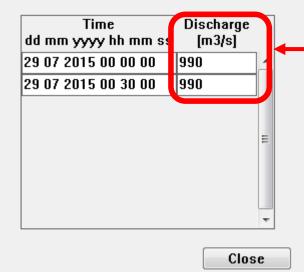
Delft3D-FLOW - C:\Users\Nick	clas_Keller\Desktop\D3D_Tutorial\D3D.mdf *		
File Table View Help Description Domain Time frame	Initial conditions Uniform values Select file File :		Setting Initial Conditions
Processes Initial conditions Boundaries	Water level (m)		• Set initial water level equal to 0
Physical parameters Numerical parameters Operations			MetersSelect Boundaries
Monitoring Additional parameters Output			
			No. Talker
		Initial conditions	Sandia National Laboratories

Delft3D-FLOW - C:\Users\Nicklas_Keller\Desktop\D3D_Tutorial\D3D.mdf *

File Table View Help

- 0 X

Flow


Boundaries : Flow Conditions Table

 Boundary:
 Upstream

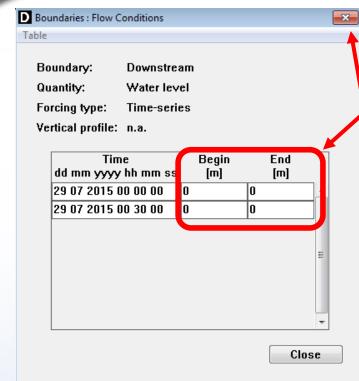
 Quantity:
 Total discharge

 Forcing type:
 Time-series

Vertical profile: Logarithmic

- Set discharge volumetric flow rate to 990 m³/s
- Close this box

×



e Table View Help				Flow
Description	Boundaries		•	Select Add
Domain	Upstream 🔺			
Time frame	Downstream	dd Open / Save		Title the section name downstream, and assign the
Processes	Se	ction name		following: $M1=53$, $N1=2$,
Initial conditions		Downstream		e i i
Boundaries	М1			M2=53, and N2=12
Physical parameters	M2	53 N2 12	•	Make sure the type of open
Numerical parameters	Flow conditions			boundary is "Water level",
Operations	Type of open boundary (quantity) :	Water level		and change the forcing type
Monitoring	Reflection parameter alpha: Forcing type:	0 [s2] Time-series		to "Time-series"
Additional parameters	Vertical profile for hydrodynamics:			
Output	Edit flow conditions		•	Select "Edit flow
				conditions" for Downstream
				boundary. Set "Begin" to 0.

Sandia National Laboratories

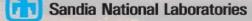
• Select Open/Save

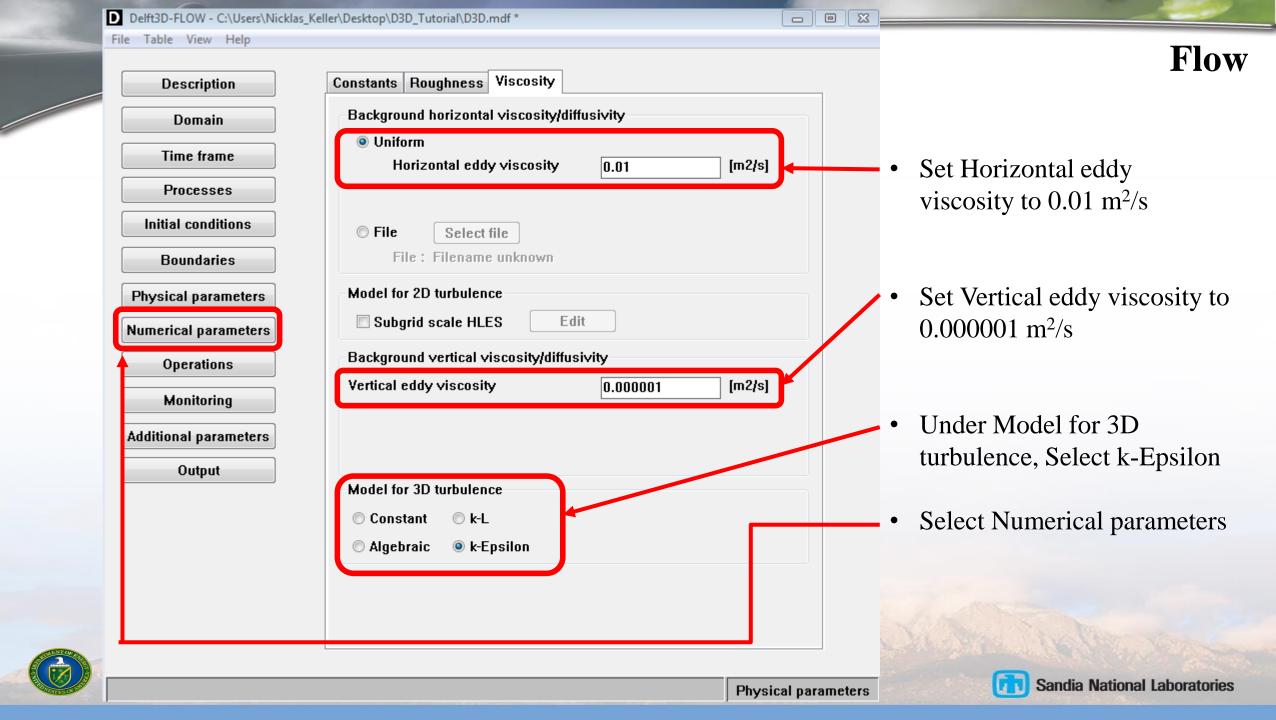
- Set "Begin" and "End" to 0.
- Close this box

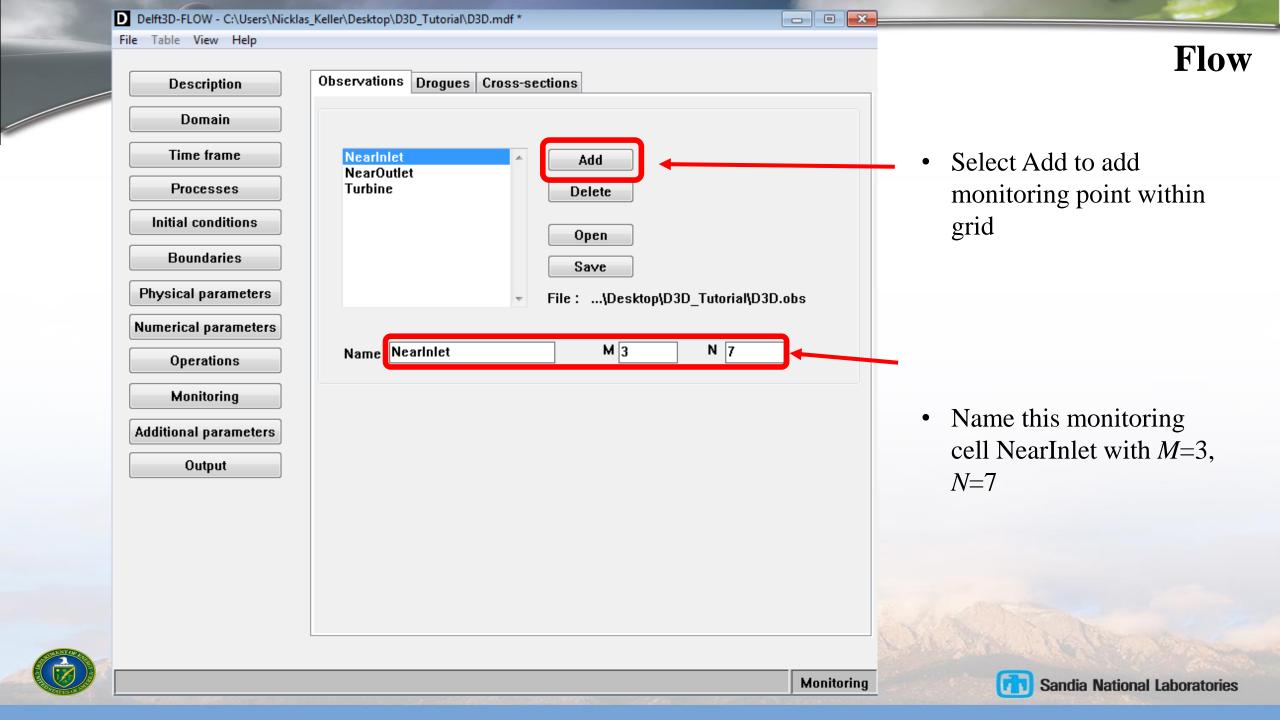
•

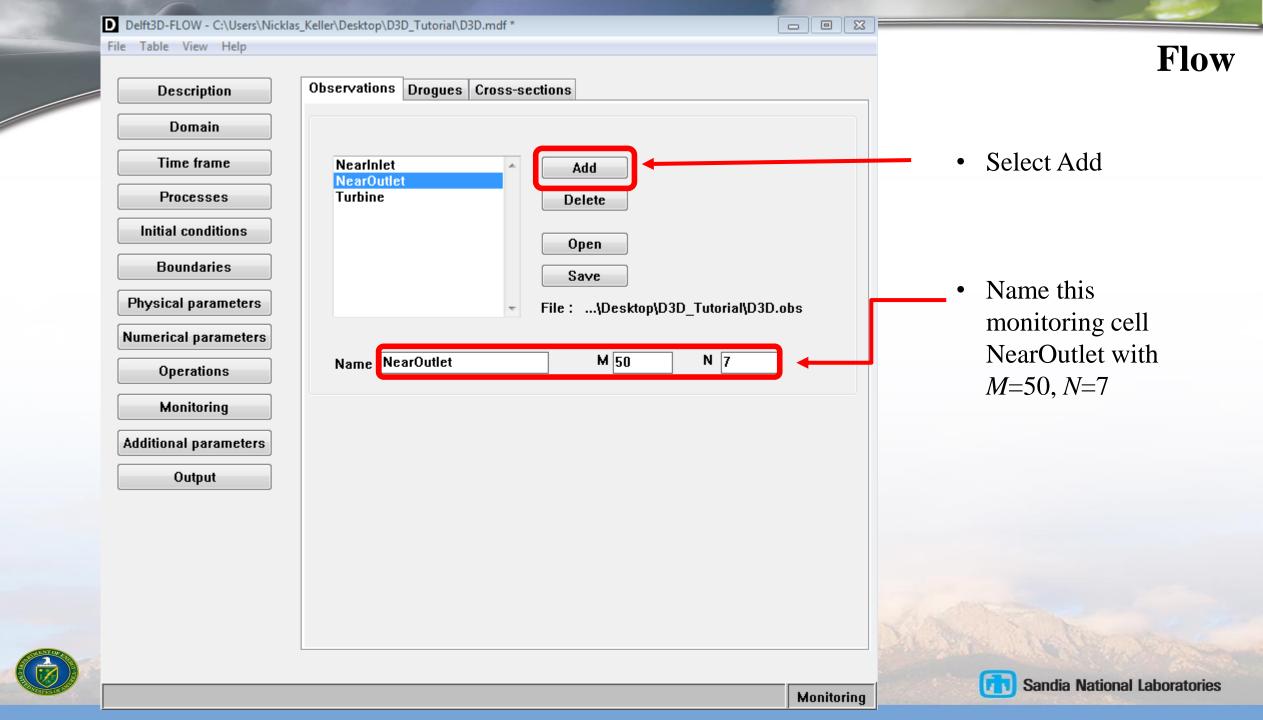
• Select "Open/Save" to save these files in order to implement them in your simulation.

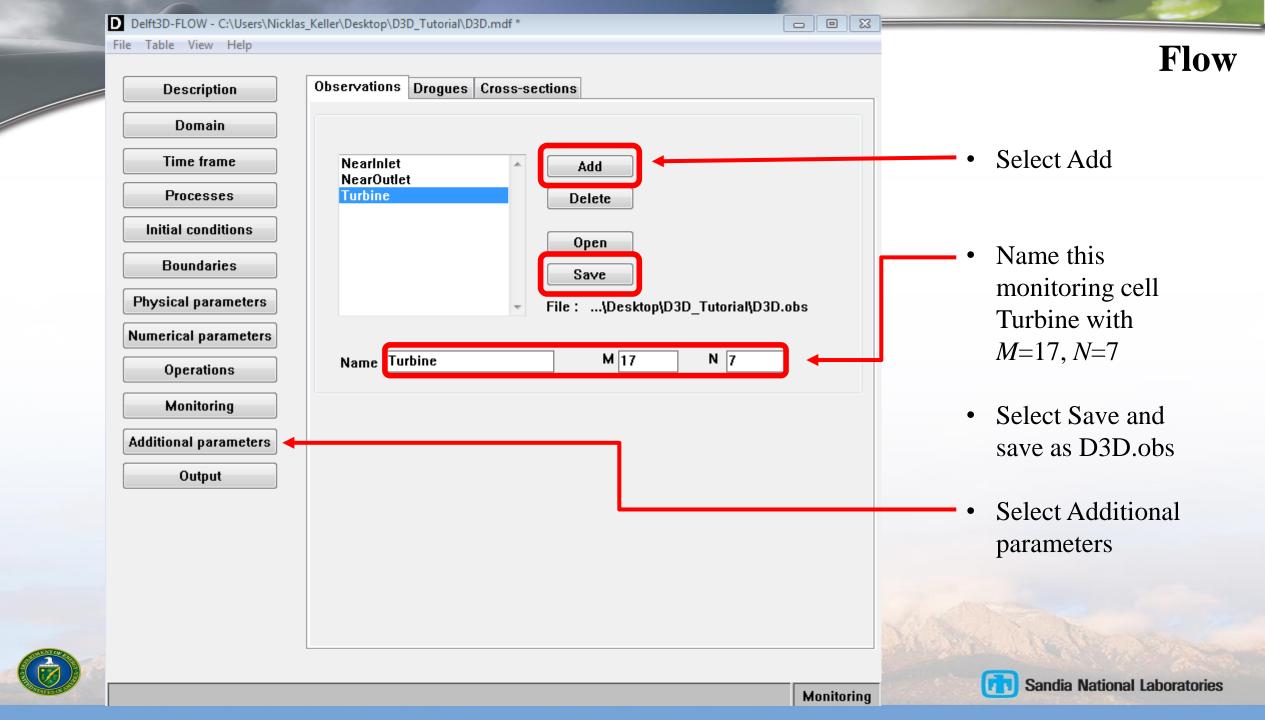
Delft3D-FLOW - C:\Users\Nickla	as_Keller\Desktop\D3D_Tutorial\D3D.mdf *		
ile Table View Help			
Description	Boundaries		
Domain	Upstream		
Time frame	Do mstream Upen / Save		
Processes	Section name		
Initial conditions	Downstream		
Boundaries	M1 53 N1 2		
Physical parameters	M2 53 N2 12		
Numerical parameters	Flov conditions		
Operations	Reflection parameter alpha: 0 [s2]	J	
Monitoring	Forcing type: Time-series		
Additional parameters	Vertical profile for hydrodynamics:		
Output	Edit flow conditions		

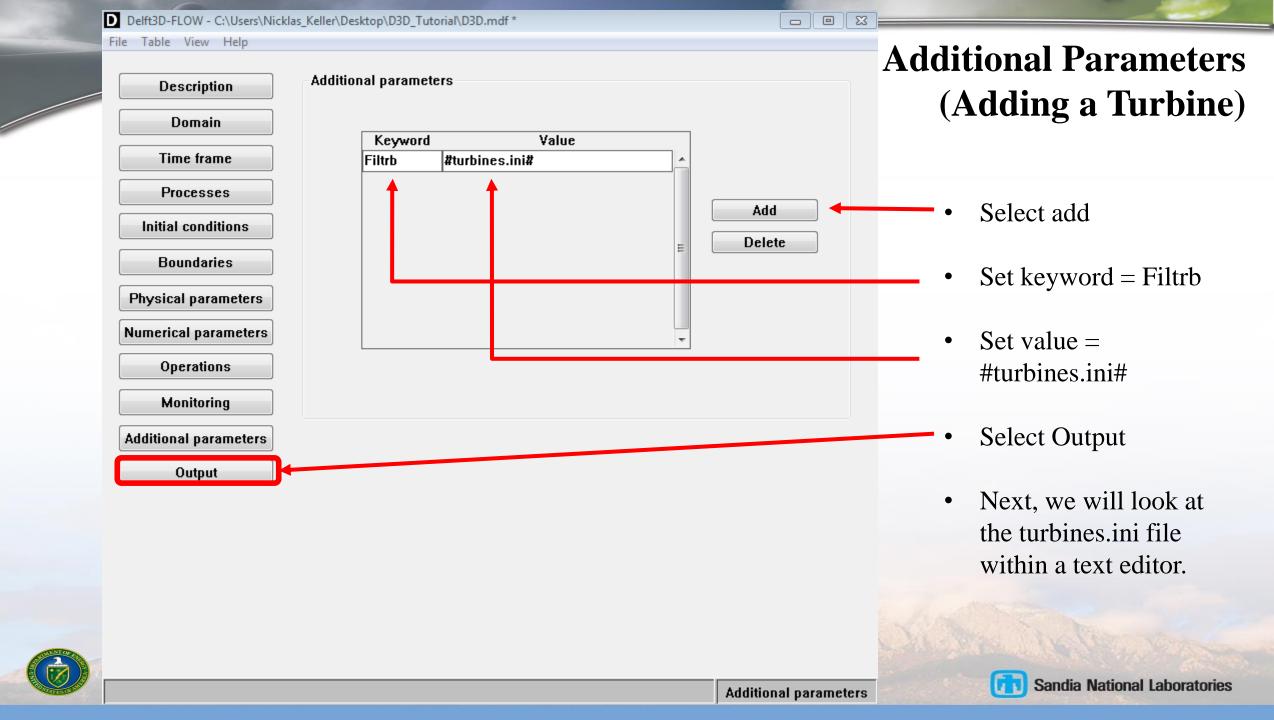

Open	Save	
Filename: C	:\Users\Nicklas_Keller\Desktop\D3D_T	utorial,D3D.bnd
stronomical fl	ow conditions	
Open	Save	
Filename: F	ilename unknown	
stronomical c	orrections	
Open	Save	
Filename: F	ilename unknown	
armonic flow	conditions	
Open	Save	
Filename: F	ilename unknown	
H-relation flov	v conditions	
Open	Save	
Filename: F	ilename unknown	
me-series flo	w conditions	
Open	Select file Save	
Filename: C	:\Users\Nicklas_Keller\Desktop\D3D_T	utorial\D3D.bct
ansport cond	itions	
Open	Select file Save	
Eilanamat E	ilename unknown	


- Save Boundary definitions and Time-series flow conditions as D3D.bnd and D3D.bct, respectively
- Close and select Physical Parameters

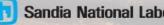

Flow


Description	Constants Roughness Viscosity	Flo
Domain Time frame	Bottom roughness Roughness formula	Select Roughness
Processes Initial conditions	Oniform U: 0.0035 V: 0.0035 O File Select file	• Set Roughness formula to Z0
Boundaries Physical parameters Numerical parameters Operations	File: Filename unknown Wall roughness	• Select Uniform, setting: $U=0.0035$ at V=0.0035
Monitoring Additional parameters	Slip condition: Free Roughness length: 0 [m]	Select Viscosity
Output		





File Table View Help				Flo
Description	Numerical parameters			
Domain	Drying and flooding check at:	Grid cell centres and face	26	
Time frame	brying and hooding chock at	 Grid cell faces only 		
Processes	Depth at grid cell faces:	Mean 👻		
Initial conditions	Threshold depth:	0.1 [m]		
Boundaries	Marginal depth:	-999 [m]		• Make sure
Physical parameters	Smoothing time:			"Smoothing time"
Numerical parameters	Advection scheme for momentum:	Cyclic		is 0 minutes
Operations	Threshold depth for critical flow lim	iter: [m]		
Monitoring				Select Monitoring
Additional parameters				
Output				
			S	



turbines.ini - Notepad

```
File Edit Format View Help
[TurbineFileInformation]
   FileVersion = 01.00
[General]
   CurvesFil
                 = #curves.trb#
[Turbine]
                 = #Tutorial Turbine#
   Name
   Diameter
                 = 5
   XYLOC
                 = 176.56
   Orientation = 180
                 = #fixed#
   VertPos
                 = -4.5
   AxisLevel
   ThrustCurve = #Turbine Type 1#
                 = #Turbine Type 1#
   PowerCurve
   NDiaDist4Vel = 1.0
   Beta_p
                 = .05
   Beta d
                 = 1.2
   Cep4
   Cep5
                 = 5.2
   TurbineModel
                    = 1
   TurbulenceModel = 1
```

- Copy the "turbines.ini" and "curves.trb" files located in the sample ٠ file directory into the D3D Tutorial directory you've created.
- Although no modifications are necessary for this case, we will ٠ now walk through the components of the turbines.ini file.
- The turbines.ini file positions the turbine, sets the turbulence ٠ model, and allows for additional turbulence control.
- Turbines.ini is an ASCII file which can be edited in a text editor. •
- The curves.trb file contains the power $(C_{\rm P})$ and thrust $(C_{\rm T})$ ٠ coefficients for the turbine.

🔄 turbines.ini - Notepad	
File Edit Format View Help	
[TurbineFileInformation]	
FileVersion = 01.00	
[General] CurvesFil = #curves.trb#	
[Turbine]	
<u>Name = #Tutoria</u> l Turbine#	
Diameter = 5	
XYLoc = 176,56 Orientation = 180	
VertPos = #fixed#	
AxisLevel $= -4.5$	
ThrustCurve = #Turbine Type 1#	
PowerCurve = #Turbine Type 1#	
NDiaDist4Vel = 1.0	
Beta_p = .05 Beta_d = 1.2	
Cep4 = 4	
Cep5 = 5.2	
TurbineModel = 1	
TurbulenceModel = 1	

- "CurvesFil" links to curves.trb file specified.
 - "Name" is any name you choose.
- Sets the location of the turbine
 - "fixed" is a constant (x,y,z) location
 - "floating" has a fixed x and y but z moves with sigma layer (see Delft 3D manual for sigma layer)
- "AxisLevel" sets hub height of turbine.
 - Water level is z = 0 m, positive above water surface.

🔄 turbines.ini - Notepad				
File Edit Format View Help				
[TurbineFileInformation] FileVersion = 01.00 [General]				
CurvesFil = #curves.trb# [Turbine]				
Name = #Tutorial Turbine# Diameter = 5 XYLOC = 176,56 Orientation = 180				
VertPos = #fixed# AxisLevel = -4.5				
ThrustCurve = #Turbine Type 1# PowerCurve = #Turbine Type 1#				
NDTADIStaver = 1.0 Beta_p = .05 Beta_d = 1.2 Cep4 = 4				
Cep5 = 5.2 TurbineModel = 1 TurbulenceModel = 1				

• ThrustCurve and PowerCurve reference "table-name" in curves.trb file.

📃 turbines.ini - Notepad	
File Edit Format View	Help
[TurbineFileInforma FileVersion =	
[General] CurvesFil =	#curves.trb#
[Turbine] Name =	#Tutorial Turbine#
Diameter =	5
Orientation =	
	#fixed# -4.5
ThrustCurve =	#Turbine Type 1# #Turbine Type 1#
NDiaDist4Vel =	1.0
Beta_d =	.05 1.2
P	4 5.2
TurbineModel TurbulenceModel	= 1 = 1

- "NDiaDist4Vel" is Number of Diameters Distance for velocity
- If TurbineModel = 0, the momentum extraction of the turbine is calculated using an upstream reference velocity determined by NDiaDist4Vel
- If TurbineModel = 1, the momentum extraction of the turbine is calculated using velocity at turbine and NDiaDist4Vel is ignored.
 - This option is useful for one turbine and when using turbine arrays where upstream velocity is not well-defined

🔜 turbines.ini - Notepad							
File Edit Format View Help							
[TurbineFileInformation]							
FileVersion = 01.00 [General]							
CurvesFil = #curves.trb#							
[Turbine]							
Name = #Tutorial Turbine#							
Diameter = 5							
XYLOC = 176,56							
Orientation = 180							
VertPos = #fixed#							
AxisLevel = -4.5							
ThrustCurve = #Turbine Type 1#							
<u>PowerCurve = $\#$Turbine Type 1#</u>							
NDiaDist4Vel = 1.0							
Beta_p = .05							
Beta_d = 1.2							
Cep4 = 4							
Cep5 = 5.2							
TurbineModel = 1							
TurbulenceModel = 1							

• TurbineModel = 0, Upstream velocity turbine model.

•
$$F_t = \frac{1}{2}\rho A C_T U_\infty^2$$

- Where the force of the turbine is a function of density, turbine area, coefficient of thrust, and ambient upstream velocity.
- TurbineModel = 1, disc velocity turbine model.

•
$$F_t = \frac{1}{2} \rho A C_T' U_d^2$$

• $C_T' = 4 \frac{1 - \sqrt{1 - C_T}}{1 + \sqrt{1 - C_T}}$

• Where the force of the turbine is a function of density, turbine area, modified coefficient of thrust, and velocity at the turbine (disk).

Roc, T., Conley, D. C., & Greaves, D. (2013). Methodology for tidal turbine representation in ocean circulation model. Renewable Energy, 51, 448-464.)

turbines.ini - Notepad File Edit Format View Help [TurbineFileInformation] FileVersion = 01.00[General] CurvesFil = #curves.trb# [Turbine] = #Tutorial Turbine# Name Diameter = 5 XYLOC = 176.56Orientation = 180 = #fixed# VertPos AxisLevel = -4.5ThrustCurve = #Turbine Type 1# = #Turbine Type 1# PowerCurve NDiaDist4Vel = 1.0= .05 Beta p Beta d = 1.2Cep4 Cons TurbineModel TurbulenceModel = 1

- TurbulenceModel = 0 no turbulence source or sink is applied at the turbine.
 - β_{P} , β_{D} , $C_{\epsilon4}$, $C_{\epsilon5}$ are ignored
- TurbulenceModel = 1 uses Rethore turbulence model
 - β_{P} , β_{D} , $C_{\epsilon4}$, $C_{\epsilon5}$ adjust source terms added to k- ϵ model at turbine location as follows:
 - $S_k = \frac{1}{2}C'_T(\beta_P U^3 \beta_D Uk)$
 - $S_{\varepsilon} = \frac{1}{2} C_T' \left(C_{\varepsilon 4} \beta_P \frac{\varepsilon}{k} U^3 C_{\varepsilon 5} \beta_D U \varepsilon \right)$

•
$$C'_T = 4 \frac{1 - \sqrt{1 - C_T}}{1 + \sqrt{1 - C_T}}$$

• Where U is velocity, k is turbulent kinetic energy (tke), ε is dissipation of tke, C'_T is the modified coefficient of thrust.

Rethore, P. E. M., Sørensen, N. N., Bechmann, A., & Zahle, F. (2009, March). Study of the atmospheric wake turbulence of a CFD actuator disc model. In 2009 European Wind Energy Conference and Exhibition.

Curves.trb file

📃 curves.trb - Notepad	I		
File Edit Format V	/iew Help	l i i i i i i i i i i i i i i i i i i i	
table-name par ameter par ameter -99.0 .90264481 -3.0 .90264481 -2.0 .90264481 -1.0 .90264481 0.0 .90264481 1.0 .90264481 2.0 .90264481 3.0 .90264481 99.0 .90264481 99.0 .90264481	'v 't	 matches the values PowerCurve found First column match second column wit 	unit [[m/s]] unit [[-]] es.trb, make sure "table-name" specified for ThrustCurve and in turbines.ini. es with first parameter 'velocity', h second parameter 'thrust coefficient' with third parameter 'power
		• Fach row of data re	presents velocity with corresponding

- Each row of data represents velocity with corresponding thrust and power coefficients at that velocity.
- In this example, C_T is constant while C_P varies. ۲

onal Laboratories

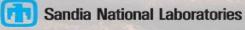
		D • U		
Description	Storage Print	Details		
Domain				
Time frame	FLOW simula	tion times Start time: Stop time:	29 07 2015 00 00 00 29 07 2015 00 30 00	
Processes		Time Step [mi	n]: 0.001	
Initial conditions	Store map res		Store communication	
Boundaries	Start time	dd mm yyyy hh mm ss 29 07 2015 00 00 00	dd mm yyyy Start time 29 07 2015 0	
Physical parameters	Stop time	29 07 2015 00 30 00	Stop time 29 07 2015 0	0 30
Numerical parameters	Interval	2 [min]	Interval 5	[min]
Operations				
Monitoring	History interv	al 10 [min]	Restart int.	[min]
Additional parameters	🗖 Fourier ana	alysis	🔲 Online visualisa	tion
Output	Select file		🔲 Export WAQ inpu	Jt
	File : Filena	ne unknown	Edit WAQ inp	ut >>

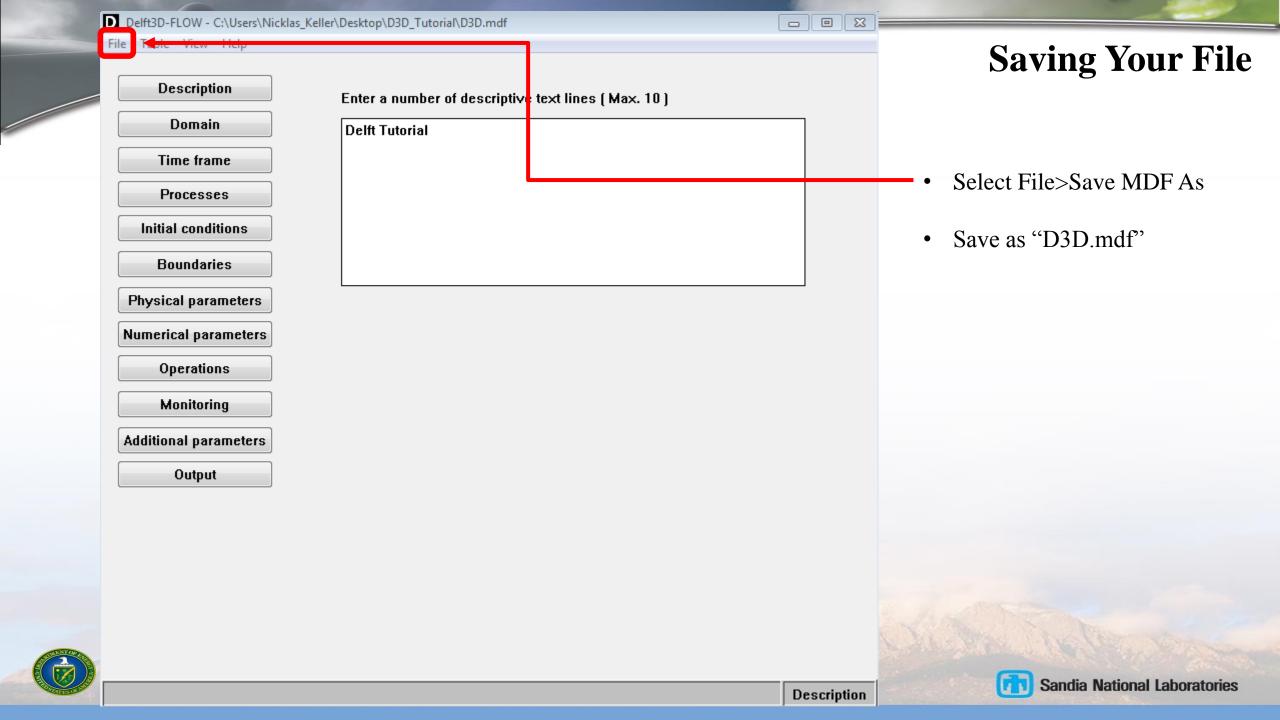
Data Output

- Return to the D3D Flow GUI and select the Output box.
- Make sure the start and stop times are indicated to run for 30 minutes
- Assign these values.
- Store map: interval = 2 min, history interval=10 min
- Store communication file: interval = 5 min, restart int.= 10 min.
- Select Print tab

Output

D Delft3D-FLOW - C:\Users\csimmo\Desktop\D3D_Basics\Files\D3D.mdf


File Table View Help

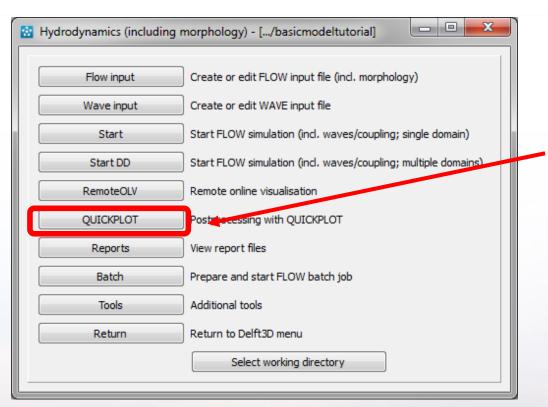

Description	Storage Print	Details		
Domain	FLOW simu	lation times	29 07 2015 00 00 00	
Time frame			Start time: Stop time:	29 07 2015 00 30 00
Processes			Time step [min]:	0.001
Initial conditions	Print history	results:		Print map results:
Boundaries	Start time	dd mm yyyy hh mm ss 29 07 2015 00 00 00 29 07 2015 00 30 00		dd mm yyyy hh mm ss
Physical parameters	Stop time			
Numerical parameters	Interval	1 [mi		
Operations				
Monitoring				Add Delete
Additional parameters				dd mm yyyy hh mm ss
Output				

Data Output

- Make sure start and stop time are set for 30 minutes
- Set Print History interval to 1 minute

- • •

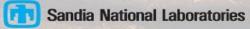
	Hydrodynamics (including	g morphology) - [/delft3d/tutorial] 🛛 🗖 🖾	Running a Flow Model
	Flow input Wave input	Create or edit FLOW input file (incl. morphology) Create or edit WAVE input file	• After saving the MDF, return to the Flow menu
	Start	Start FLOW simulation (incl. waves/coupling; single domain)	Select Start
	Start DD	Start FLOW simulation (incl. waves/coupling; multiple domains)	
	RemoteOLV	Remote online visualisation	
	QUICKPLOT	Postprocessing with QUICKPLOT	
	Reports	View report files	Delft3D-FILSEL 5.00.00
	Batch	Prepare and start FLOW batch job	Hydrodynamics (*.mdf) Select input file from current directory
	Tools	Additional tools	D3D.mdf Browse
	Return	Return to Delft3D menu	
		Select working directory	• Browse to find the correct
			.mdf file
SCHENTOR			Select OK
STATES OF			Sandia National Laboratories


I	🔯 Delft3D - [D3D] - runni	ing compu	tational p	rogram							8	
	File												
	Standalone FLOW computation												
	Starting Delft3D-FLOW computation												
												1	1
	Dei	ltares,	FLOW2D3	D Versi	ion 6.01.01	.00000	00, Jui	n 11 2	015, 17	:47:10			
	flo	ow2d3d.d	ll entr	y Flow2	2D3D::Run								=
												l	
	Part I - Initialisation Time Dep. Data module runid : D3D												
	Part II - Creating intermediate files												
		Part III - Initialisation of the Execution module											
	Part IV							•					
					necking inp	ut							
					hecking sec		art						
	Part VII	- Initia	alisati	on outp	put	-							
	Part VIII	- Start	Simula	tion									
	Time to	finish	0s,	0.0%	completed,	time	steps	left	100				
	Time to	finish	3s,	1.0%	completed,	time	steps	left	99				
					completed,		-		98				
					completed,		-		97				
			-		completed,		_		96				
			-		completed,		_		95				
		finish	-		completed,		-		94				
	Time to	finish	18,	7.0%	completed,	time	steps	Teit	93			_	T
	•											P.	

Running a Flow Model

- At this point, the model should be running. Run time: ~3 min.
- Upon successful completion of run, we can now post process this information.
- If file fails to get through Parts I-VIII, check directory for td-diag-<u>casename</u> and tri-diag-<u>casename</u>, where <u>casename</u> is the name of your .mdf file
- tri-diag-<u>casename</u> is always available and displays simulation summaries.

Post Processing with QUICKPLOT


- After the model has completed running, close the window and return to the main menu and click "Utilities".
- Select QUICKPLOT.
- QUICKPLOT is a post-processing tool that utilizes MATLAB plotting to display various plots.
- MATLAB does not need to be installed on your computer in order to run QUICKPLOT.

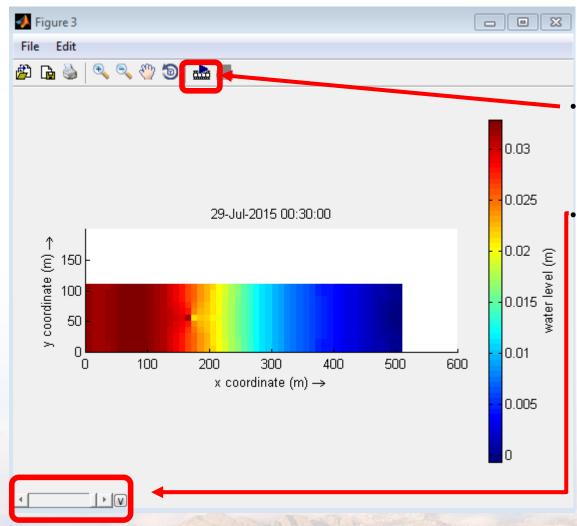
QUICKPLOT

		Select Ope	n File
Domain	Y	Select Ope	
Subfield			
Time Step			
Show Times			
	Ŧ		
M range and N range V K range	e 🔻		
M All	-		
N All	-		
K Ali	-		
Define Var. Add to	Plot Quick View	T	
	And A state of the Annual of		

QUICKPLOT

📣 Select data file to op	pen				23
○○ □ □ ≪ My	/ Documents 🕨 D3D Tutorial 🕨 D3I	D_Tutorial_Model 🗸	 ✓ Search D3L 	D_Tutorial_Model	Q
Organize 🔻 Ne	w folder			= -	0
🔆 Favorites	Name	Date modified	Туре	Size	
	com-D3D.dat	12/4/2015 5:58 PM	DAT File	423 KB	
🥽 Libraries	trih-D3D.dat	12/4/2015 5:58 PM	DAT File	44 KB	
	itrim-D3D.dat	12/4/2015 5:58 PM	DAT File	811 KB	
🔋 🖹 Simmons, Chris	topher				
👰 Computer 👽 Network					
	File name: trim-D3D.dat		Delft3D Out Open	put Files (*.dat;*.ada	•

- Open "trim-D3D.dat"
- Be sure to open the trim-D3D.dat rather than the trih-D3D.dat.
- The "trim-D3D.dat" file contains output data at all cell nodes and faces written out at each time step specified in the "Store map results" section of the Data Output.
- Since we specified a two minute map storage interval over a 30 minute simulation, there will be 15 (30/2) time steps plus initial time step.

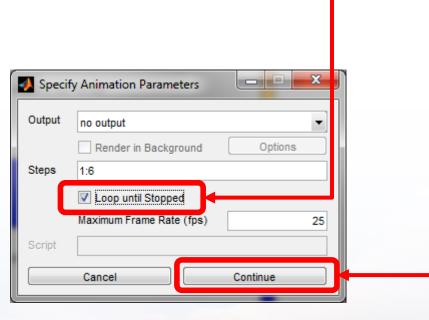


QUICKPLOT – Water Level Contour

A Delft3D-QUICKPLOT		To view the water level at the final time
File Macro Window Help		
e e i e i e i e i e i e i e i e i e i e		step, select water level from the drop down
C:\Users\csimmo\Desktop\D3D_Basics\Files\trim-D3D.dat	Axes Type	box.
Domain v water level v	Presentation Type	• The highest time step was the last
Subfield value of the step All 16 16	Data Units As in file	recorded solution.
Show Times	Use Value Classes	
	Colour Limits automatic Symmetric Limits	
M range and N range	Colour Map	Select Quick View
M 📝 All 1 53	jet 💌	School Quick Them
N 📝 All 7 13	☑ Draw Colou bar	
K 🗌 All 🔤 - 🛶	Horizon al	
Define Var. Add to Plot Quick View	Clipping Values	

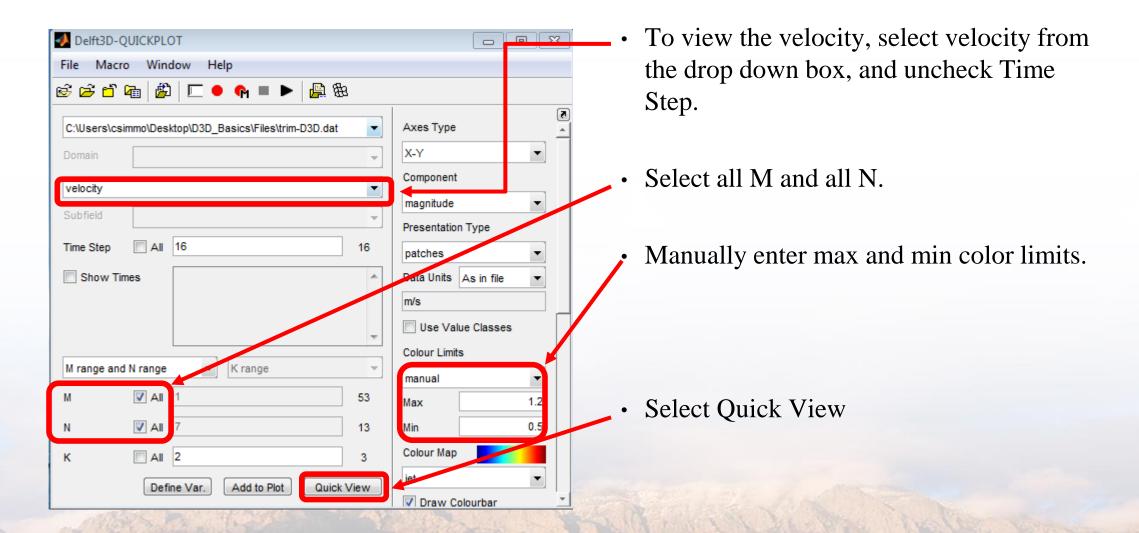
QUICKPLOT – Water Level Contour

Select Specify Animation Parameters to animate.

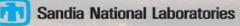

This bar allows viewing at different times.

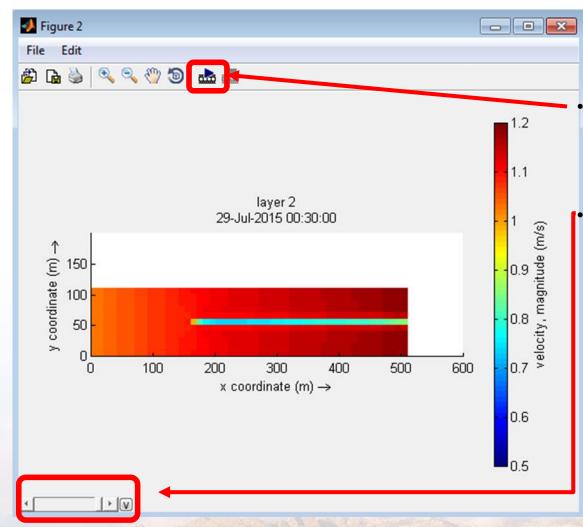
QUICKPLOT – Water Level Contour

Check Loop until Stopped



Select Continue

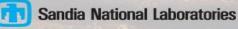



QUICKPLOT – Velocity Contour

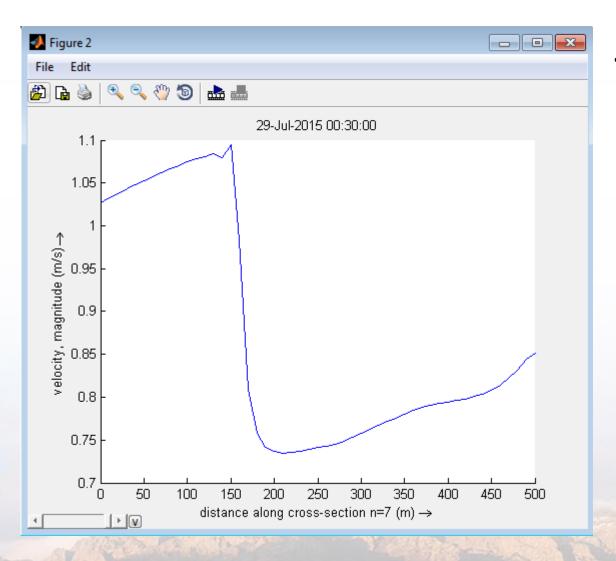
QUICKPLOT – Velocity Contour

Select Specify Animation Parameters to animate.

This bar allows viewing at different times.



QUICKPLOT – Centerline Velocity


A Delft3D-QUICKPLOT		
File Macro Window Help		
ස් ස් 🛱 🛱 🗖 🖣 🕨 🖗	臣	
C:\Users\csimmo\Desktop\D3D_Basics\Files\trim-D3D.dat	t 🔻 Axes Type	
Domain	X-Val	
velocity	Component	
Subfield	magnitude	
	Data Units As in file	
Time Step 🔲 All	10 m/s	
Show Times	Plot Coordinate	
	path distance	
	Colour	
	Line Style -	
M range and N range	Width 0.5	
M 🛛 All 1	53 Marker none 💌	
N All 7	13 Clipping Values	
К 🔲 АІІ 2	3 -999	
Define Var. Add to Plot Quick	k View	
	Tekal file	

- To view a different plot, such as centerline velocity, return to the QUICKPLOT menu.
 Select velocity
- Uncheck Time Step.
- Choose centerline values for N and K.
- Select Quick View

QUICKPLOT – Centerline Velocity

• Using this button, you can choose to view by time or by layers.

QUICKPLOT

Sandia National Laboratories

Delft3D-Q	QUICKPLOT	
File Macro	o Window Help	
ල් 🖻 🗂	🌆 🏂 🗖 🗕 🗛 🔳 🕨	
C:\IIsers\csi	immo\Desktop\D3D_Basics\Files\trim-D3D.dat	Use Value Classes
		Colour Limits
Domain		manual 🗨
velocity		Max 1.2
Subfield		- Min 0.5
Time Step	☑ AI 16 10	6 Colour Map
		jet 🗨
Show Tin	nes	Draw Colourbar
		Horizontal
		▼ Clipping Values
M range and	IN range 🔹 K range	-999
м	☑ All 1 55	3 X
N	✓ All 7	у Y
		Export File Type
к	All 2 3	mat file (v6)
	Define Var. Add to Plot Quick Anima	Export Data

- To export data, choose Export File Type
- Select Export Data...
- QUICKPLOT will export data according to selection in the drop down window.

Starting Simulation from Restart File

In order to get the most accurate results, we will first need to establish a restart file that we produced from the first run we made. Return to the flow input menu and select Initial conditions.

	Delft3D-FLOW - C:\Users\Nicklas_Keller\Desktop\D3D_Tutorial\D3D.mdf *	
	File Table View Help	
🔯 Hydrodynamics (including morphology) - [/delft3d/tutorial]	Description Initial conditions	
Flow input reate or edit FLOW input file (incl. morphology)	Domain Uniform values Select file Time frame File :	
Wave input Create or edit WAVE input file	Time frame Processes	
Start Start FLOW simulation (incl. waves/coupling; single domain)	Initial conditions Water level 0 [m]	
Start DD Start FLOW simulation (incl. waves/coupling; multiple domains)	Boundaries	
RemoteOLV Remote online visualisation	Physical parameters Numerical parameters	
QUICKPLOT Postprocessing with QUICKPLOT		
Reports View report files	Operations Monitoring	
Batch Prepare and start FLOW batch job	Additional parameters	
Tools Additional tools	Output	
Return Return to Delft3D menu		
Select working directory		
ACCESSION BARNER		
		itial conditions Laboratories

Description	Initial conditions		
Domain	Restart file	•	Select file
Time frame			File :\Desktop\D3D_Tutorial\tri-rst.1.001000
Processes			
Initial conditions	Water level] [m]
Boundaries	HIGELIEVEL] [m]
Physical parameters			
Numerical parameters			
Operations			
Monitoring			
Additional parameters			
Output			

Restarting a Simulation

- Change the dropdown menu to "Restart file"
- In the directory where the tutorial is located, there should now be a file that is titled, "tri-rst.D3D.....001000" (This is the restart file for Delft3D)
- Rename this file: tri-rst.1.001000
- Select file tri.rst.1.001000

Initial conditions

