Used Fuel Disposition Campaign

Deep Borehole Disposal (DBD) Session Summary

Geoff Freeze Sandia National Laboratories

UFD Working Group Meeting Las Vegas, NV June 9, 2016

Used Fuel Disposition

Deep Borehole Disposal (DBD) Breakout Sessions

SESSION 1 - WEDNESDAY, JUNE 8, 2016: 08:00 AM - 09:50 AM

Time	Presenter	Topic
08:00 - 08:10	Tim Gunter (DOE)	DBFT Overview and Status
08:20 - 08:30	Geoff Freeze (SNL)	DBD Safety Case Framework
08:30 - 08:45	Dave Sassani (SNL)	DBFT Site Evaluation and Site Selection
08:45 - 09:00	Frank Perry (LANL)	Geologic Framework Model
09:00 – 09:05	Glenn Russell (INL)	Regional Geology Web Map Application
09:05 - 09:20	Emily Stein (SNL)	DBD PA Model
09:20 - 09:30	Kris Kuhlman (SNL)	DBFT Borehole Characterization
09:30 – 09:35	Kurt Nihei (LBNL)	Monitoring and Characterization
09:35 - 09:50	Group Discussion	Siting and Characterization

SESSION 2 - WEDNESDAY, JUNE 8, 2016: 10:10 AM – 12:00 NOON

Time	Presenter	Topic
10:10 - 10:30	Ernie Hardin (SNL)	DBFT Engineering Overview
10:30 - 10:40	Fred Peretz (ORNL)	Surface Handling and Transfer Cask Concept
10:40 - 10:50	John Cochran (SNL)	Emplacement Zone Completion Options
10:50 - 11:10	Group Discussion	Engineering
11:10 - 11:20	Jonny Rutqvist (LBNL)	DRZ Modeling and Testing
11:20 - 11:30	Pat Dobson (LBNL)	Swedish Deep Borehole R&D
11:30 - 11:40	Florie Caporuscio (LANL)	Laboratory Testing of Sealing Materials
11:45 – 11:50	T.J. Ulrich (LANL)	DRZ and Fracture Detection
11:50 – 11:55	Andrew Delorey (LANL)	Stresses and Breakouts

Used Fuel Disposition

DBD and **DBFT** Overview

UFD is conducting a Deep Borehole Field Test (DBFT)

- To demonstrate and evaluate technologies necessary for determining the safety and feasibility of the deep borehole disposal (DBD) concept
- Currently working with Spink County SD

DBD R&D is ongoing

- Borehole testing and characterization methods
 - properties of low-k crystalline rock, DRZ, and deep, high-T brines
- Geologic framework model
- Engineering design
 - deep drilling
 - waste packages
 - surface handling and emplacement system
- PA model

DBD Safety Case – Current Status for Cs/Sr Disposal

Pre-Closure Safety Case for Deep Borehole Disposal of Cs/Sr:

- <u>Drilling</u> and casing a large diameter borehole to 5,000 m depth in crystalline basement rock is achievable with existing drilling technology.
- Surface handling and emplacement systems can be engineered to provide a high level of assurance that waste packages can be safely emplaced at the desired depth with minimal probability of packages becoming stuck and/or breached.
- Additional hazard analyses needed for: transportation, worker exposure, surface handling, and external events (e.g., seismic, flooding, sabotage)

■ Post-Closure Safety Case for Deep Borehole Disposal of Cs/Sr:

- Waste emplacement is deep; in <u>low-permeability crystalline basement rock</u> with limited interaction with shallower groundwater.
- Borehole seals can be engineered to maintain their physical integrity, at least over the approximately 100-year time period of thermally-induced upward groundwater flow.
- Preliminary results from post-closure PA calculations suggest <u>minimal radionuclide</u>
 <u>releases</u> beyond the disposal zone and zero dose at biosphere.