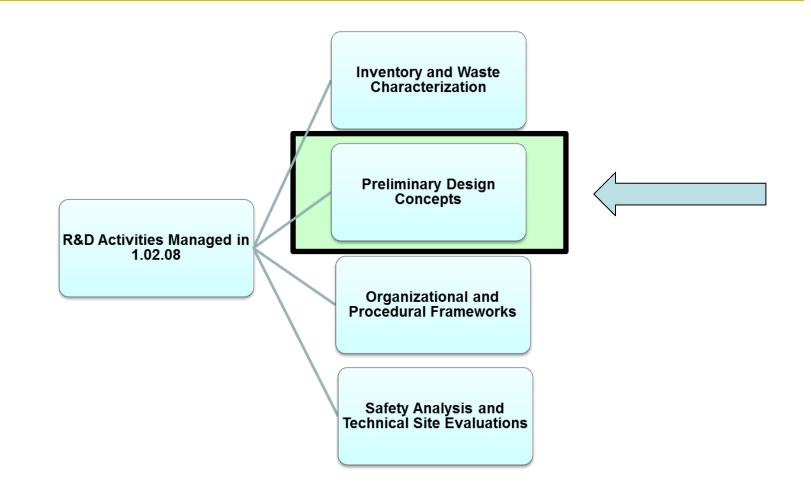
Used Fuel Disposition Campaign

DOE-Managed SNF and HLW Research: Preliminary Design Concepts -Work Package Overview -Waste Package Considerations -DREP Salt Design Concept

Ed Matteo, Ernie Hardin, Mark Rigali, Teklu Hadgu, Heeho Park

UFD Working Group University of Nevada/Las Vegas June 7-9, 2016


Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5548 PE

Outline

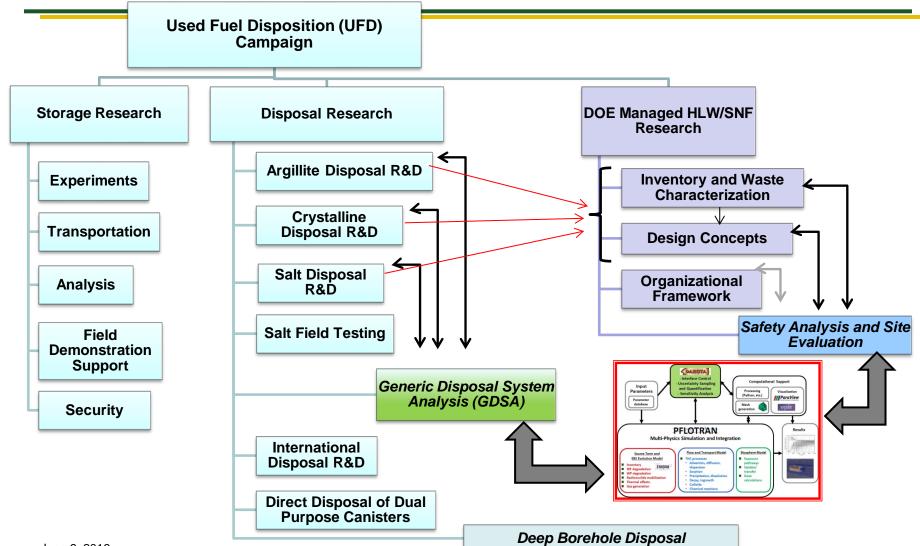
Outline

- Part 1 -- Overview of Preliminary Design Concepts Work scope
 - Inventory
 - Host Media and Design Considerations
- Part 2 -- Waste Packaging Considerations
- Part 3 -- DREP Design Concept for Salt

Structure of Technical Work Areas

DOE Managed HLW and SNF Research: Preliminary Design Concepts for Selected Media

OBJECTIVES:


Evaluate the preliminary design concepts for the inventory within select media.

Specific geologic media under consideration are those currently investigated within the Used Fuel Disposition Campaign (argillite, <u>crystalline</u>, deep borehole, and <u>salt</u>).

SCOPE:

- Assess feasibility and applicability of Engineered Barrier Systems (EBS) concepts in select geologic media for the technical challenges specific to the inventory.
- A particular emphasis will be placed on analyzing thermal conditions and their effect on the inventory's compatibility with EBS concepts/disposal media. (WP1)
- Investigate and evaluate options for both disposal overpack and waste package design. (WP2)
- Layout and emplacement. (WP3)

Used Fuel Integration Linkages Disposition

80% of DOE-Managed HLW volume is glass

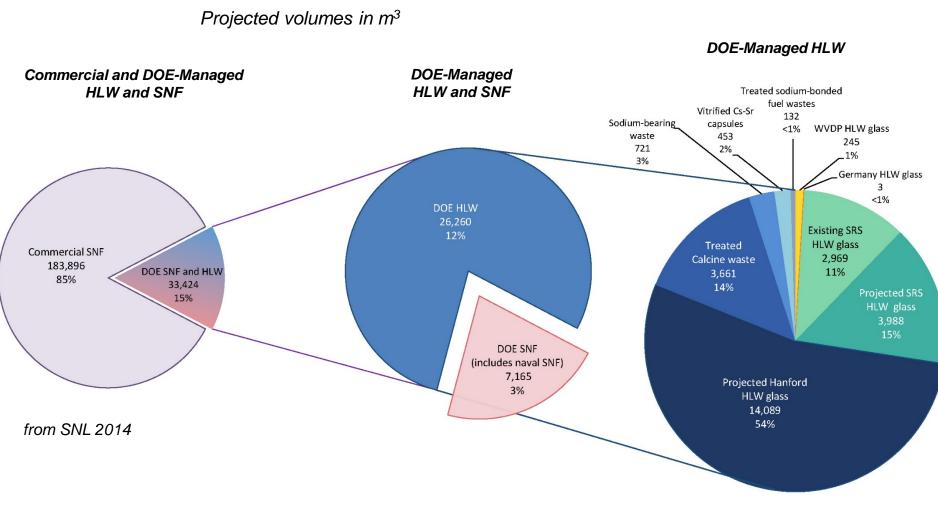


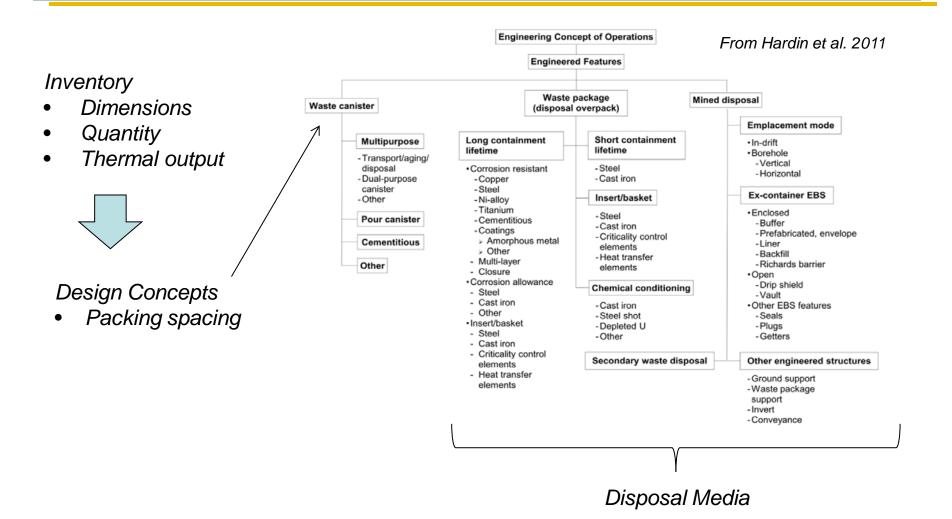
Table 3. Waste groups and pertinent characteristics for SNF in the US nuclear waste inventory (source: SNL 2014)

Waste Group	Description	Waste Form	Dimensions		^b Avg. thermal output per waste package
*WG1	CSNF in PBC	^d Purpose-built canister (PBC)		Packages	<25 kW ^c
		Borehole Small Medium	10.6" dia by 181.1" 32.3" dia by 196.9" 50.8" dia by 202.0"	470,063 89,364 31,163	
^a WG2	CSNF in DPC	Large Dual-purpose canister (DPC)	63.0" dia by 202.0" 98" dia. by 197" to 225"	16,924 11,413	<25 kW ^c
WG5 – Metallic Spent Fuels WG6 – Sodium bonded fuels WG7 – DOE oxide fuels WG9 – coated particle spent fuels	Heterogeneous mix of DSNF	Multi-canister Overpack (MCO) 18x10 18x15 24x10 24x15	24" dia by 166.4" 18" dia by 10' 18" dia by 15' 24" dia by 10' 24" dia by 15'	413 1,506 1,474 133 27	500W or less
WG10 – Naval fuel	Naval SNF	Naval SNF canister	66" dia by 187" 66" dia by 201.5"	90 310	11.8 kW limit 4.25 kW avg.

^a WG1 and WG2 are not under current consideration as DOE-Managed HLW and SNF. These WG's are included merely for the purpose of comparison between CSNF and DOE-Managed SNF.

^b Year 2048, if projected. Thermal output data correspond to thermal output per waste package in the year 2048.

° Stipulated by regulation to be <25kW


^d Assumes only one size PBC is used for all the CSNF waste, such that the number of waste packages (solely for CSNF in PBC's) corresponds to the number of PBC's, all of a particular size, that would be needed for all CSNF. For example, if all CSNF were to be disposed of in borehole-sized PBC's, 470,063 of these canisters would be needed to contain all of the CSNF waste.

Used Fuel		Waste Group	Description	Waste Form	Waste Package Dimensions	^a Number of Waste Packages	^a Avg. thermal output per waste package
Disposition		WG3 – HLW Glass	Existing SRS HLW Glass	SRS canister	24" dia by 118"	3,339	30 W
·		_	Existing West Valley HLW Glass	WVDP canister	24" dia by 118"	275	238W
			FRG HLW Glass	FRG canister	11.8" dia by 47.2"	34	^b 950W
SRS Glass			Projected Hanford HLW Glass	Hanford canister	24" dia by 177"	10,586	^{29W}
39 % of canisters	< 50 W		Projected SRS HLW Glass	SRS canister	24" dia by 118"	4,485	30W
6.1% 51.4%	50–100W 100–220W		Calcine Waste (vitrified)	Vitrified Calcine Waste Canister	24" dia by 118"	11,400	1.2-15.4 W
3.5%	220–300W		Cs/Sr capsules at Hanford (vitrified)	Vitrified Cs/Sr waste in Hanford HLW Glass canister	24" dia by 177"	340	905W
Hanford Glass		WG4 – other	^c Metallic sodium bonded	Glass-bonded sodalite from EMT	24"dia by 118"	64	2,240W
83.9% of canisters	< 50 W	Engineered waste		INL Metal waste from EMT	24"dia by 118"	64	neglible
11.1%	50–100W	forms	^d Calcine waste	HIP canister	66" dia by 204"	3,200	40-540W
			Hot Isostatic Pressing	(encloses 10 HIP cans)			
4.7%	100–220W		(HIP - A)	cansy			
0.3 %	220–300W		Calcine waste (HIP – B)	HIP canister (encloses 10 HIP cans)	66" dia by 204"	1,600	80-1080W
All glass		WG8 –salt, granular solids,	Metallic sodium bonded	Salt waste from EMT direct disposal canister	24"dia by 118"	64	2,240 W
72.2% of canisters	< 50 W	powders	Calcine Waste (Direct Disposal)	Direct disposal canister	26" dia by 121"	4,900	2.4-36W
7.4%	50–100W		Sodium bearing waste (SBW) at INL	SBW canister	26" dia by 120"	688	2.5W
19.1%	100–220W		Cs/Sr Capsules (Direct Disposal)	Untreated in overpack/canister	24" dia by 120"	Cs- 267 Sr - 121	800W 1,170W
0.2%	220–300W		(Direci Disposai)	overpack/canister	(6 capsules per canister)	51 - 121	1,170W
1.1%	300-500W		ojected. Thermal output data corr		vaste package in the year 2048		

^b Final configuration not selected. The canisters listed in Table 4 could be disposed of individually or stacked 2 or 3 per container. ⁴ Metallics sodium bonded fuels can be processed by electro-metallurgical treatment (EMT) to produce either 1) metal waste and glass-bonded Design Concepts: Work Package ⁴An alternative to HIP-B, HIP-A includes calcine waste plus Si, Ti, and CaSO, to produce RCRA-compliant glass ceramic waste form.

Data from Carter et al. 2013

Used Fuel Creating a Design Concept Disposition

Used Fuel Disposition Geologic Setting Classification (Baldwin *et al.*, 2008)

No	General Description	Host rock	Overlying rocks
G1	Stronger rocks with very low flow of likely saline waters	Crystalline rock	Low permeability sedimentary rock formations High permeability sedimentary rock formations
G2	Stronger rocks with higher water flow; probably relatively fresh water	Crystalline rock	Low permeability sedimentary rock formations High permeability sedimentary rock formations Crystalline rock to surface
		Carbonate	Sedimentary rock formations (permeability unspecified)
00	Weaker rocks with no effective flow and relatively saline waters in	Indurated low permeability sedimentary rock formation	Low permeability sedimentary rock formations High permeability sedimentary rock formations
G3	G3 pores (transport is dominated by diffusion with no advective flow)	Plastic low permeability sedimentary rock formation	Sedimentary rock formations (permeability unspecified)
G4	Weaker rocks with very low water flow and relatively saline waters in	Indurated low permeability	Low permeability sedimentary rock formations
57	pores (there is some advective flow)	sedimentary rock formation	High permeability sedimentary rock formations
G5	Evaporite formations: plastic, with no water flow and little accessible water (brine) content	Evaporites - salt dome & bedded salt	Sedimentary rock formations (permeability unspecified)

Geologic Setting Characteristics in Baldwin's Schema

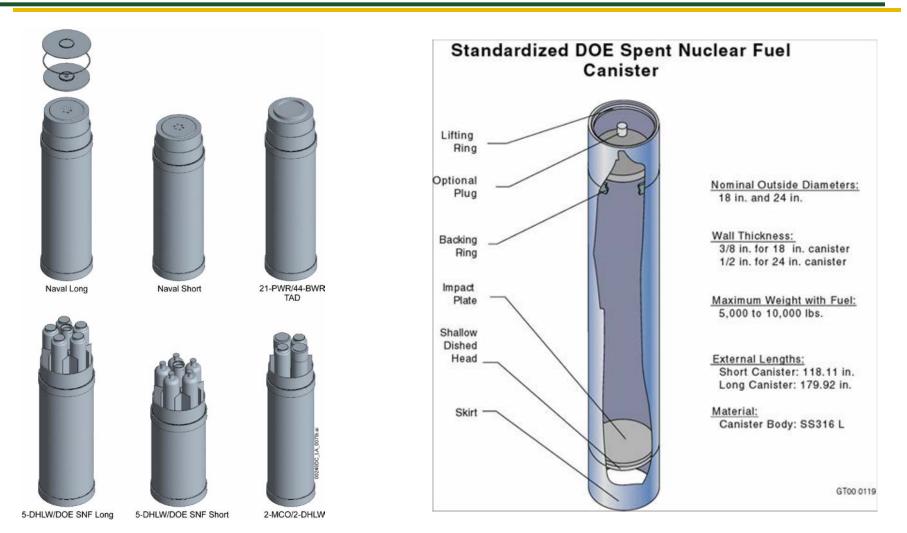
al.		G1	G2	G3	G4	G5
in Baldwin et	General rock properties	Stronger rocks	Stronger rocks, greater water flow	Weaker rocks	Weaker rocks	Evaporite formations, plastic, little accessible water
	Probable porewater salinity	Saline	Relatively fresh	Relatively Relatively saline saline		Brine
Environments (2008)	Water flow characteristics	Very little flow	Greater flow	No effective flow	Very little flow	No effective flow
al Envi	Main transport mechanisms	Some advection	Advection	Diffusion, no advection	Some advection	Diffusion, no advection
Geological	Host rock	Crystalline rock	Crystalline rock or Carbonate	Indurated low permeability or Plastic low permeability sedimentary	Indurated low permeability sedimentary	Evaporites - salt dome and bedded

Disposal Concepts in Baldwin's Schema

Key feature	Variants	Concept No.		
In-tunnel (borehole)	Vertical borehole	1		
	Horizontal borehole	2		
In-tunnel (axial)	Short-lived canister and buffer	3		
	Long-lived canister and buffer	4		
In-tunnel (axial) with	Small working annulus	5		
supercontainer	Small annulus + concrete buffer	6		
	Large working annulus	7		
Caverns with cooling, delayed backfilling	Steel multi-purpose transport/storage/disposal containers (MPC) + bentonite backfill	8		
	Steel or concrete/DUCRETE container + cement backfill	9		
Mined deep borehole matrix				
Hydraulic cage	Around a cavern repository	11		
Very deep boreholes		12		

Used Potential Design Considerations Fuel related to specific disposal Disposition concepts

Operational impact:

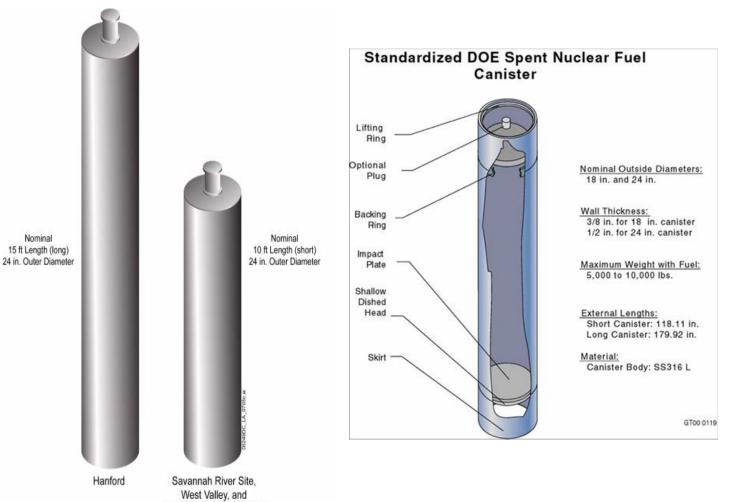

- Lateral (horizontal) extent of host rock formation and/or easement/withdrawal area
- Stability of excavations in the stress field
- Ensure quality buffer construction
- Shielding throughout emplacement operation

Safety Impact:

- Minimize EDZ
- Waste emplacement in relatively undisturbed zone (beyond access tunnel EDZ)
- Cementitious passivation of metal components
- Ensure compact repository footprint
- Minimize excavation volume
- Thermal Management open vs. closed mode

Used Fuel Pt. 2, Waste Packaging Considerations Disposition

Crystalline Waste Packages


Crystalline Waste Packaging Options, 1/2

Waste Group	Description	Waste Form	Waste Package Dimensions	b Number of Waste Packages	Average Thermal output per package (W)	Granite Disposal Package Type	Number of Disposal Packages	Granite Emplacement Mode
	Existing SRS HLW Glass	SRS canister	24" dia by 118"	3,339	30	Co-disposal Package (short)	668	Horizontal Borehole
WG3 – HLW Glass	Projected Hanford HLW Glass	Hanford canister	24" dia by 177"	10,586	29	Co-disposal Package (long)	2,118	Horizontal Borehole
	Projected SRS HLW Glass	SRS canister	24" dia by 118"	4,485	30	Co-disposal Package (short)	897	Horizontal Borehole
	Calcine Waste (vitrified)	Vitrified Calcine Waste Canister	24" dia by 118"	11,400	1.2-15.4	Co-disposal Package (short)	2,280	Horizontal Borehole
	Cs/Sr capsules at Hanford (vitrified)	Vitrified Cs/Sr waste in Hanford HLW Glass canister	24" <u>dia</u> by 177"	340	905	Individual disposal overpack	340	Vertical Borehole
	^c Metallic sodium bonded	Glass-bonded sodalite from EMT Metal waste from EMT	Copackaged in 24" dia by 118" canister	148 total combined	2,240	Individual disposal overpack	148	Vertical Borehole
WG4 – other Engineered HLW forms	^d Calcine waste Hot Isostatic Pressing (HIP – A)	HIP canister (encloses 10 HIP cans)	66" <u>dia</u> by 204"	3,200	40-540	Individual disposal overpack	3,200	Horizontal Borehole
	Calcine waste (HIP – B)	HIP canister (encloses 10 HIP cans)	66" <u>dia</u> by 204"	1,600	80-1080	Individual disposal overpack	1,600	Horizontal Borehole

Crystalline Waste Packaging Options, 2/2

Waste Group	Description	Waste Form	Waste Package Dimensions	^b Number of Waste Packages	Average Thermal output per package (W)	Disposal Package Type (Granite)	Number of Disposal Packages	Granite Emplacement Mode
WG5 – Metallic Spent Fuels WG6 – Sodium bonded fuels (Na removed)	Heterogeneous mix of DSNF	Multi-canister Overpack (MCO)	24" dia by 166.4"	413	500 or less	Individual disposal overpack	413	Vertical Borehole
WG7 - DOE oxide fuels WG9 - coated particle spent fuels		18x10 18x15 24x10 24x15	18" dia by 10' 18" dia by 15' 24" dia by 10' 24" dia by 15'	1,506 1,474 133 27		Individual disposal overpack	1,506 1,474 133 27	Vertical Borehole
WG8 –salt, granular solids,	Metallic sodium bonded	Salt waste from EMT direct disposal canister	24"dia by 118"	25	2,240	Individual disposal overpack	25	Vertical Borehole
powders	Calcine Waste (Direct Disposal)	Direct disposal canister	RH-72B 26" dia by 121"	4,900	2.4-36	Co-disposal Package	1,225	Horizontal Borehole
	Sodium bearing waste (SBW) at INL	SBW canister	26" dia by 120"	688	2.5W	Co-disposal Package	172	Horizontal Borehole
	Cs/Sr Capsules (Direct Disposal)	Untreated in overpack/canister	24" dia by 120" (6 capsules per canister)	Cs- 267 Sr - 121	800-1170	Individual disposal overpack	Cs- 267 Sr – 121	Vertical Borehole
WG10 – Naval fuel	Naval SNF <1000W	Naval SNF canister	66" dia by 187" 66" dia by 201.5"	11	<1,000	Naval SNF canister	11	Horizontal Borehole

Salt Waste Packages

Idaho National Laboratory

Design Concepts Work Package

Salt Waste Packaging Options, 1/2

Waste Group	Description	Waste Form	Waste Package Dimensions	ь Number of Waste Packages	Average Thermal output per package (W)	Salt Disposal Package Type	Number of Disposal Packages	Salt Emplacement Mode
	Existing SRS HLW Glass	SRS canister	24" <u>dia</u> by 118"	3,339	30	As Packaged	3,339	Horizontal
WG3 – HLW Glass	Projected Hanford HLW Glass	Hanford canister	24" <u>dia</u> by 177"	10,586	29	As Packaged	10,586	Horizontal
	Projected SRS HLW Glass	SRS canister	24" <u>dia</u> by 118"	4,485	30	As Packaged	4,485	Horizontal
	Calcine Waste (vitrified)	Vitrified Calcine Waste Canister	24" <u>dia</u> by 118"	11,400	1.2-15.4	As Packaged	11,400	Horizontal
	Cs/Sr capsules at Hanford (vitrified)	Vitrified Cs/Sr waste in Hanford HLW Glass canister	24" <u>dia</u> by 177"	340	905	As Packaged	340	Horizontal
	^c Metallic sodium bonded	Glass-bonded sodalite from EMT	24"dia by 118"	148 total combined		As Packaged		Horizontal
WG4 - other		Metal waste from EMT	24"dia by 118"		negligible	As Packaged		Horizontal
Engineered HLW forms	^d Calcine waste Hot Isostatic Pressing (HIP – A)	HIP canister (encloses 10 HIP cans)	66" <u>dia</u> by 204"	3,200	40-540	As Packaged	3,200	Horizontal
	Calcine waste (HIP – B)	HIP canister (encloses 10 HIP cans)	66" <u>dia</u> by 204"	1,600	80-1080	As Packaged	1,600	Horizontal

Salt Waste Packaging Options, 2/2

Waste Group	Description	Waste Form	Waste Package Dimensions	^b Number of Waste Packages	Average Thermal output per package (W)	Disposal Package Type (Salt)	Number of Disposal Packages	Salt Emplacement Mode
WG5 – Metallic Spent Fuels WG6 – Sodium bonded fuels (Na removed) WG7 – DOE	Heterogeneous mix of DSNF	Multi-canister Overpack (MCO)	24" <u>dia</u> by 166.4"	413	500 or less	As Packaged	413	Horizontal
oxide fuels WG9 – coated particle spent fuels		18x10 18x15 24x10 24x15	18" dia by 10' 18" dia by 15' 24" dia by 10' 24" dia by 10' 24" dia by 15'	1,506 1,474 133 27		As Packaged	1,506 1,474 133 27	Horizontal
WG8 –salt, granular solids,	Metallic sodium bonded	Salt waste from EMT direct disposal canister	24"dia by 118"	64	2,240	As Packaged	64	Horizontal
powders	Calcine Waste (Direct Disposal)	Direct disposal canister	RH-72B 26" dia by 121"	4,900	2.4-36	As Packaged	4,900	Horizontal
	Sodium bearing waste (SBW) at INL	SBW canister	26" <u>dia</u> by 120"	688	2.5W	As Packaged	688	Horizontal
	Cs/Sr Capsules (Direct Disposal)	Untreated in overpack/canister	24" dia by 120" (6 capsules per canister)	Cs- 267 Sr - 121	800-1170	As Packaged	Cs- 267 Sr – 121	Horizontal
WG10 – Naval fuel	Naval SNF <1000W	Naval SNF canister	66" dia by 187" 66" dia by 201.5"	11	<1,000	As Packaged	11	Horizontal

Pt. 3 – Salt Disposal Concept

Used Disposal Concepts for a DRep in Salt: Fuel Identify Candidate Concepts for Evaluation

- Objectives for Review: <u>safety</u>, cost, portability
- Disposal Concept = WF + geologic setting + concept of ops.
 - Waste form:
 - Mostly HLW glass, low heat output, SS pour canisters
 - DSNF of various types, pre-canistered
 - Geologic setting:
 - Concept of operations?

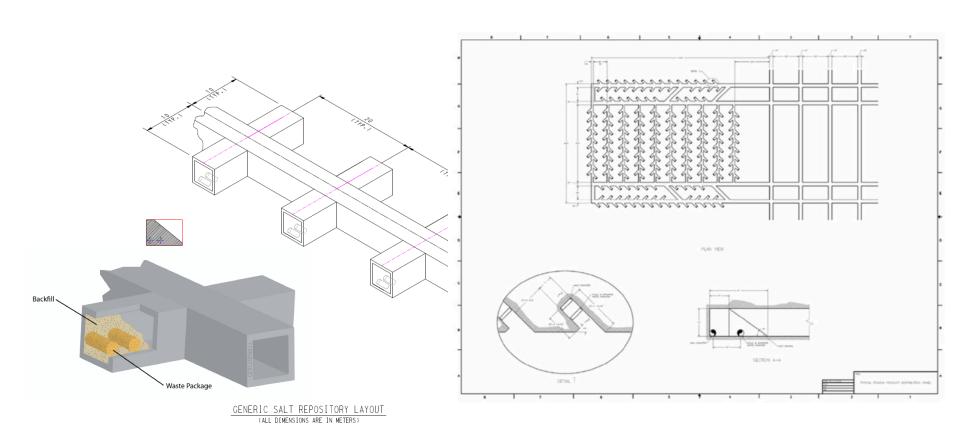
Used
Fuel
DispositionDisposal Concepts for a D-rep:Defense Waste Characteristics

- Low-thermal (up to 1 kW per 3- or 5-m canister)
- Long-lived radionuclides (~10⁶-year assessment)
- Large numbers of canisters (data from Carter et al. 2012)
 - 3,542 DSNF (99.4% < 1 kW in 2030)
 - 23,032 HLW (SRS, Hanford & Idaho; all < 1 kW)</p>
- Small canisters (mostly 18- and 24-inch diameters)
 - Neglecting Naval SNF which is most similar to CSNF
 - (Assume Idaho calcine is package in standardized canisters.)
- Relatively lightweight (canister + contents; no overpack)
 - DSNF 5,000 to 10,000 lb
 - HLW 5,512 yto 9,260 lb

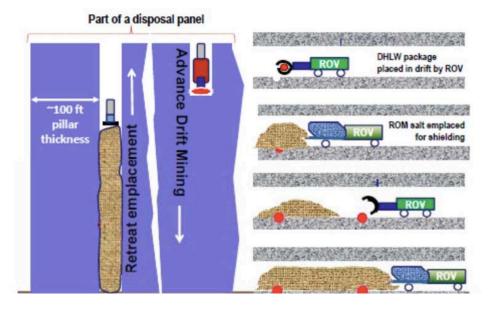
Material: stainless steel (welded, no heat treat, sensitized)

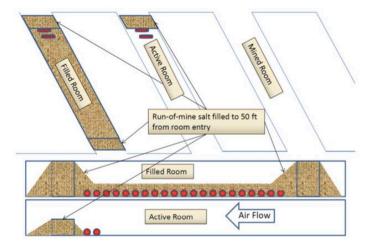
All require some shielding (±)

Used Disposal Concepts for a DRep in Evaporite (Salt): Fuel Salt Geologic Settings


Plastic formation

- Creep behavior impacts concept of operations
 - Excavations will close due to creep
 - Just-in time drift construction
 - Self-healing
- Brine pore water
- Virtually impermeable media (diffusion dominated)
- Ramp Access only in domal salt
 - For bedded salt, shaft access only


- Bedded or Domal Salt Constructability
 - Opening stability
 - Salt backfill
- Superior Heat Dissipation
- Nominal and Disturbed Performance
 - Releases dominated by human intrusion
- Natural Barrier
 - Insignificant groundwater abundance and mobility (nominal)
 - Brine saturation (esp. human intrusion)
- Engineered Barriers
 - Backfill and seals
 - Robust containment during operations
 - Emplacement borehole behavior (e.g., heavy liners)


- Direct Disposal of Pour Canisters
 - HLW glass stability in operational environment
- Robust Overpacking of Other Waste Forms
 - Carbon steel overpack (e.g., DSNF)
- Just-in-Time Drift Construction
 - Minimize handling of crushed salt
- In-Drift Emplacement (axial or transverse)
 - Relatively small, lightweight canisters (e.g., 6 MT HLW)
 - Immediate backfilling with crushed salt
- Constructability Challenges
 - Remote operation in unshielded environments

Salt Concept Illustrated

Salt Concept Illustrated (cont.)

Conclusions

Preliminary Design Concepts WP is focused on disposal concepts for salt and crystalline host media

- Characteristics of DOE-Managed Waste
 - Thermal, volume, waste groups
- Design considerations specific to host media
- Waste packaging options specific to crystalline and salt concepts

Preliminary Salt concept

- Bedded salt formations
- Shaft access
- Axial or transverse emplacement with crushed salt backfill

References

Carter, J. T., Luptak, A. J., Gastelum, J., Stockman, C., and Miller, A. 2013. Fuel Cycle Potential Waste Inventory for Disposition, FCRD-USED-2010-000031 Rev 6.

DOE (US Department of Energy) 2014. Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel. October, 2014.

DOE (US Department of Energy), 2015. Report on Separate Disposal of Defense High-Level Radioactive Waste, March 2015.

Freeze, G. and P. Vaughn, 2012. "Performance Assessment Framework Requirements for Advanced Disposal System Modeling," FCRD-UFD-2012-000227, August 2012.

Hardin, E., J. Blink, H. Greenberg, M. Sutton, M. Fratoni, J. Carter, M. Dupont and R. Howard 2011. Generic Repository Design Concepts and Thermal Analysis (FY11). FCRD-USED-2011-000143 Rev. 2. December, 2011. U.S. Department of Energy, Used Fuel Disposition R&D Campaign.

SNL (Sandia National Laboratories) 2014. Evaluation of Options for Permanent Geologic Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy. FCRD-UFD-2013-000371. SAND2014-0187P; SAND2014-0189P. Revision 1. Albuquerque, New Mexico: Sandia National Laboratories.