Deep Borehole – UFDC - 2016 – Las Vegas

The Role of Zeolite Phase Transformations in Deep Borehole Seals

CAPORUSCIO, F., NORSKOG, K., MANER, J.

LOS ALAMOS NATIONAL LABORATORY

UNIVERSITY OF OKLAHOMA

Repository Program Objectives

U.S. Used Fuel Disposition Campaign Deep boreholes Program

- Use mine-run, unpurified bentonite and highly saline brines
- Investigate chemical evolution in a bentonite buffer at deep borehole temperature and pressure.

- Silica generation and cation exchange

Zeolites – recognize significance of their growth

Previous EBS work identified clinoptilolite, analcime, wairakite

Scenarios – Base of Seals, Bottom of Hole

Base of Seals : 150 – 175 C, 300 bar, 8 week (hydrostatic) - ongoing

Bottom of Borehole: 400 C, 1 Kbar, 2 week (lithostatic) - results

UNCLASSIFIED

Experimental conditions for bottom of borehole

Experimental Reactants

- Unprocessed Wyoming bentonite
- f(O₂) buffered at ≈ IM (iron-magnetite) univariant line
- Cs-Na-Ca-Cl-based solution: loaded at 2:1 W/R ratio
 - NaCl, CaCl, Cs/Ca/NaCl brines, 2molal
 - 400 C, 1 Kbar

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Clinoptilolite SEM Images

Clinoptilolite after glass shard – WY bentonite

Clinoptilolite dissolution-EBS12- low water content

UNCLASSIFIED

Slide 4

• clinoptilolite \rightarrow analcime + SiO₂ + H₂O

- $(Na,K,Ca)_{2-3}AI_3(AI,Si)_2Si_{13}O_{36} \cdot 2H_2O \rightarrow Na_6AI_6Si_{12}O_{36} + SiO_2 + 2H_2O$
- Phase change as low as 100 °C (Smyth, 1982, Masuda, et al., 1996)) however most occurred between 200-300 °C in our experiments

UNCLASSIFIED

EBS5 - Analcime reaction product

UNCLASSIFIED

Slide 6

Opalinus Clay Experiments

Three experiments

EBS-14 Opalinus Clay (O.C.) only – 300 °C isothermal, 6 week, O.C. groundwater

EBS-15 – As above + WY bentonite + 316 S.S.

EBS-17 - As above + WY

UNCLASSIF

Opalinus Clay Brine

	Туре	Actual
	Solution	Solution
Species	mg/L	mg/L
Ca ²⁺	421	426
CI-	5672	6470
CO32-	162	n.m.
K+	221	225
Na ⁺	3885	3846
Si	5	1
SO4 ²⁻	2305	998
Sr ²⁺	27	0.16
TDS	11502	12153
рН	7.24	7.50
Experiment		
Used		EBS 14, 15, 17

EBS-14 – Wairakite produced as reaction product

UNCLASSIFIED

Slide 8

Mixed clay experiments – Opalinus + WY Bentonite

- Experiments EBS-15 (316 SS) and EBS-17 (Cu)
- Brine : Opalinus Clay groundwater
- Analcime in early experiments
- Wairakite in Opalinus Clay experiment
- One would expect a high temperature zeolite somewhere in the Analcime – Wairakite solid solution join

 $Na_{3}AI_{6}Si_{12}O_{36} \leftrightarrow Ca_{3}AI_{6}Si_{12}O_{36}$

UNCLASSIFIED

Slide 9

EBS15 Analcime₆₄--Wairakite₃₆

UNCLASSIFIED

Slide 10

Analcime – Wairakite Solid Solution Determinations

Pollucite Generation from Cs waste forms

- Further experimental system Explore the tertiary portion of this zeolite group.
- Cesium may be a waste stream disposed of in Deep Boreholes
- Would Cs be readily incorporated into analcime structure if canister failed post emplacement?

Analcime \leftarrow Pollucite \leftarrow Wairakite Na₆Al₆Si₁₂O₃₆ \leftarrow Cs₆Al₆Si₁₂O₃₆ \leftarrow Ca₃Al₆Si₁₂O₃₆

UNCLASSIFIED

Slide 12

Pollucite created from bentonite clay at high P,T

SiO ₂	56.64
Al ₂ O ₃	18.63
FeO	0.68
MnO	0.01
MgO	0.05
CaO	4.95
Na ₂ O	1.27
K ₂ O	0.05
Cs₂O	13.56
CI	0.2
F	0.01
O=Hal	-0.05
TOTAL	96.01

Average of 30 EMP analyses

An_{18.3} Wrk₃₉ Pol_{42.7}

UNCLASSIFIED

Slide 13

- Engineered Barrier Systems using bentonite backfill /buffer in a high temperature repository must be aware of system bulk chemistry.
- Na-rich / Ca-poor clays (WY bentonite) produces Analcime
- Ca-rich / Na-poor clay rock (Opalinus Clay) produces Wairakite
- Mixed system (Opalinus Clay + WY bentonite) generates Analcime – Wairakite SS
- Created Cs bearing zeolite (Pollucite) from bentonite and Cs/Ca/NaCl brine at high P,T
- This zeolite may be critical to isolating Cs contamination
- Need to now investigate stability field

UNCLASSIFIED

This project was funded by U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Technologies, Used Fuel Disposition Campaign.

FT-16LA08030802

Virgil Lueth, and George Mason provided assistance in the laboratories.

LA-UR-16-23849

UNCLASSIFIED

Slide 15

