Used Fuel Disposition Campaign

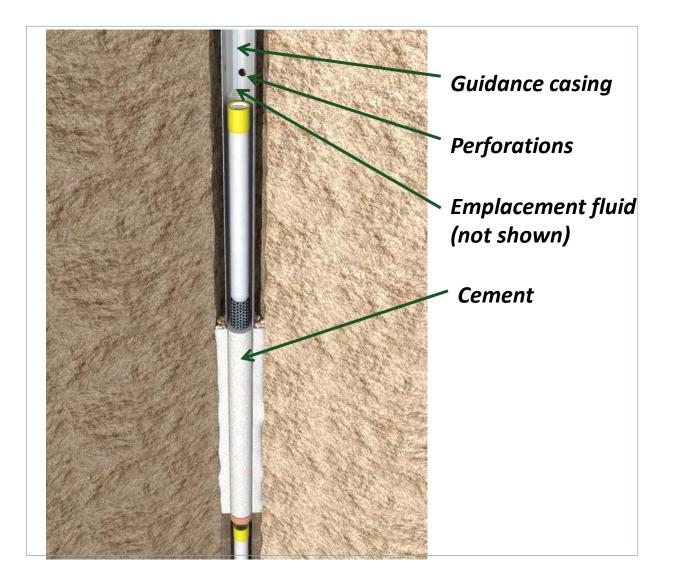
Options for Completing the Emplacement Zone for Deep Borehole Field Disposal

John R. Cochran & Ernest L. Hardin Sandia National Laboratories

2016 UFDC Annual Working Group Meeting Deep Borehole Field Test Session, June 8, 2016

Las Vegas, NV

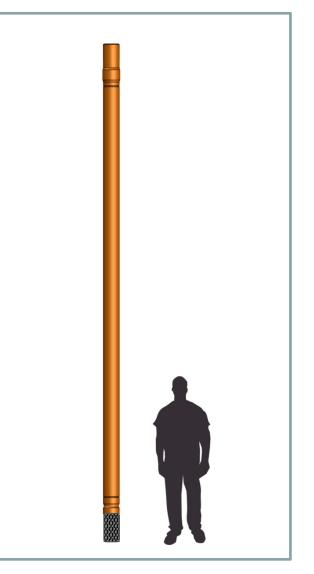
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. **SAND2016-5005 C**



- Four options for constructing & completing emplacement zone were developed and evaluated
- Study not specific to any location or waste form
- Study identified key uncertainties for possible investigation during deep borehole field test (DBFT)

Possible Components for Completing the EZ

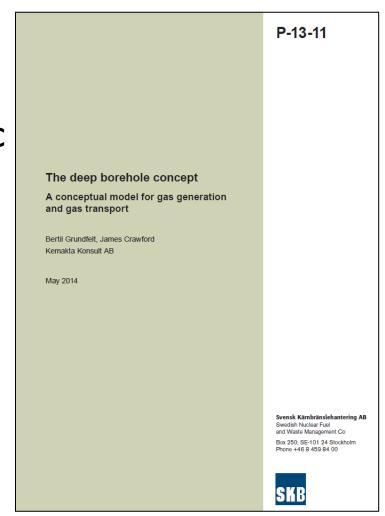
Used Fuel


Disposition

- Characteristics of waste packages (WPs)
- Need to place WPs in intervals
- Affects on EZ caused by thermal pulse, from decay heat from the wastes
- Generation of hydrogen gas

Used Fuel Characteristics of Generic WPs

One of the conceptual WP designs


- Must limit compressive stress on bottom WP
- Place intervals of 40 or fewer WPs (~200 m)
- Weight of each interval must be transferred to borehole wall

Used Fuel Disposition Affects Thermal Pulse After Emplacement

- Decay heat from waste will create thermal pulse
- Conservatively, at 3 km, 140° C temperature rise above ambient
- Thermal pulse < 100 years</p>
- Effects of thermal pulse:
 - Emplacement fluid expands ~ 5% to 20% in volume, possible great stresses
 - Steel expands ~ 0.1% to 0.16%, possible great stresses

Used Fuel Disposition

- $\blacksquare 3Fe_{(cr)} + 4H_2O \leftrightarrow Fe_3O_{4(s)} + 4H_{2(g)}$
- SKB (2014) calculated equilibrium partial pressure at 15,700 psi at 100° C
- Issue requires additional study
- That said, some EZ configuration options are better than others

- Clear smooth path for WP emplacement
- Keep rock / cement / junk from falling in path of WPs
- Helps dissipate surge pressure when WPs lowered
- Aligns WPs as stacked (limit offset loading)
- Facilitates placement of cement plugs if used
- Limits terminal sinking velocity, if WP accidently dropped
- Facilitate recovery of WPs in case of accident

Key Conclusion – all EZ options will include guidance casing

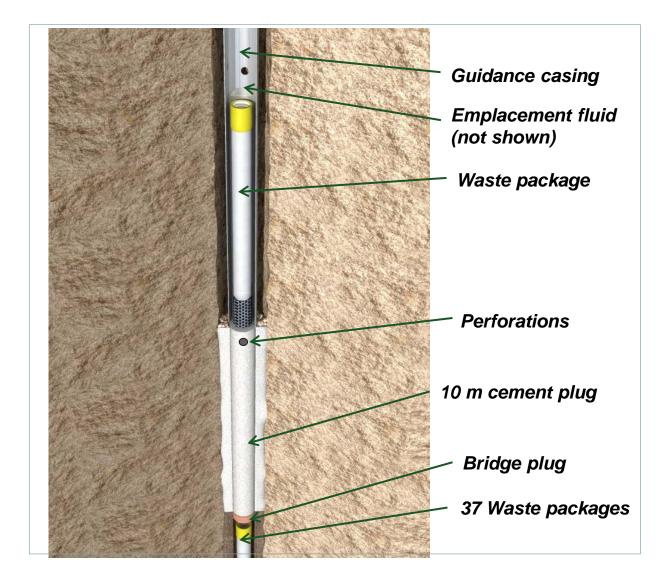
Perforations are necessary:

- to equalize fluid pressure from inside guidance casing
- for cementing

Used **Fuel**

> Too many perforations, or too large, reduce advantages of guidance casing

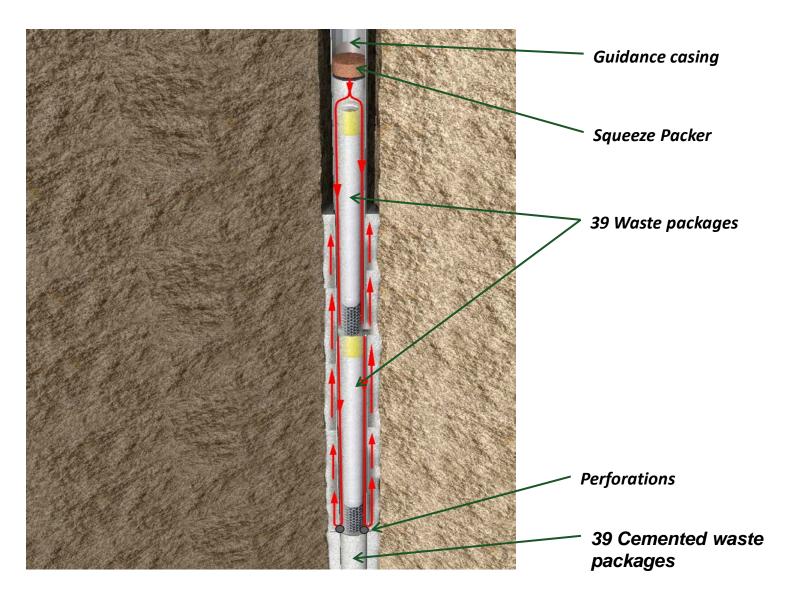
- Cement can be used several ways to construct and close EZ
 - To create cement plugs to transfer weight of WPs to borehole wall
 - To secure casing and prevent thermal expansion
 - At closure, to replace emplacement fluids
 - No fluids to expand
 - Limited water for hydrogen gas generation


Used Fuel Disposition

Four Options for Construction and Completing EZ

Option	Pre-Installed	Guidance	In-Situ	WP	Cement Plug Installations	
-	Perforations	Casing Install	Perforations	Emplacement	/ Cementing	
						Final Configuration
1	One 2 cm diameter every 50 m	Hang casing in fluid-filled borehole	Large perforations at top of each cement plug	200 m stack of WPs	Set bridge plug, set 10 m thick cement plug by gravity overflow inside guide casing and flowing into rock annulus, clean out casing	Perforated guide casing, closure fluid between rock & guide casing & between guide casing and WPs, 10 m cement bridge plugs ~ 200 m apart
2	One 2 cm diameter every 50 m	Hang casing in fluid-filled borehole	Large perforations at bottom of each cement plug	200 m stack of WPs	Set bridge plug, set squeeze package 10 m higher, and <u>inject</u> <u>cement</u> into this plug interval and through perfs. into the annulus	Perforated guide casing, closure fluid between rock & guide casing & between guide casing and WPs, 10 m cement bridge plugs ~ 200 m apart
3	none	Hang casing in fluid-filled borehole, fully cement to borehole wall, bottom up	Perforate at intervals for pressure relief only, then mill out inside of casing	200 m stack of WPs	Set bridge plug, plus 10 m thick cement plug inside casing by gravity placement, then clean out casing	Solid guide casing, cement between rock and guide casing full length, fluid between WPs and guidance casing, with 10 m cement plugs ~ 200 m apart inside guidance casing
4	none	Perforate at bottom of each 200 m interval	Large perforations at bottom of each stack interval, mill out inside casing	200 m stack of WPs	Set squeeze packer at top WP interval, injected cement through packer in annulus between WPs & guidance casing - cement travel down WP interval & up between rock and casing annulus	Guide casing fully cemented, with cement between rock & guide casing & cement between guide casing and WPs

- Base case design, Arnold, et al., 2011
- 13 ³/₈ inch guidance casing in tension before emplacement
- 2 cm perforation every 50 m
- 37 WPs per interval
- Set 10 m cement plug above each interval, to hold weight of next interval
- At closure: 9 intervals of WPs, separated 10 m cement plug
- At closure: fluid between WP and casing, and fluid between casing and formation


Option 1 Diagram

Used Fuel Disposition

- 13³/₈ inch guidance casing
- Guidance casing in tension before emplacement
- No perforations
- 39 WPs per interval
- Cement each interval of WPs (inside and outside) as shown in diagram
- At closure: WPs cemented in guidance casing, and guidance casing is cemented to formation
- Advantages fully cemented interval: holds weight of next interval of WPs, prevents expansion of steel guidance casing, removes liquids (thermal and H2)

Option 4 Diagram

Used

Fuel

Disposition

- Key uncertainties for possible investigation during the filed test:
 - Affect of perforations on terminal velocity WPs
 - Cementing options

- Four options for constructing & completing EZ developed
- Generic: not specific to any location or waste form
- Key conclusion: guidance casing should be used
- Key uncertainties: affects of perforations, cementing options