Used Fuel Disposition Campaign

"EBS experimental update: aluminosilicate phase transformations, corrosion of copper and steel"

Florie A. Caporuscio ¹, Kate Norskog¹, James Maner ¹ Carlos Jove-Colon ² ¹ Los Alamos National Laboratory ² Sandia National Laboratory

> UFD Annual Meeting – Las Vegas, Nevada June 10, 2016

FY'16 Objectives

EBS Program

- Experiment characterization (EBS18, EBS 19).
- > Investigate the Fe-saponite, chalcocite growth at metal interface with bentonite.
- > Characterize and interpret all experiments.
- Produce 3 more Opalinus clay experiments to finish baseline (304 SS, LCS 6 wk isothermal 300 C, 304 SS 6 month)
- Cold seal reactors (800 C, 2.5 Kbar) pressure certified September 2015, electrical safety certified January 2016 21 experiments completed

International Program

FEBEX-DP forensic investigation

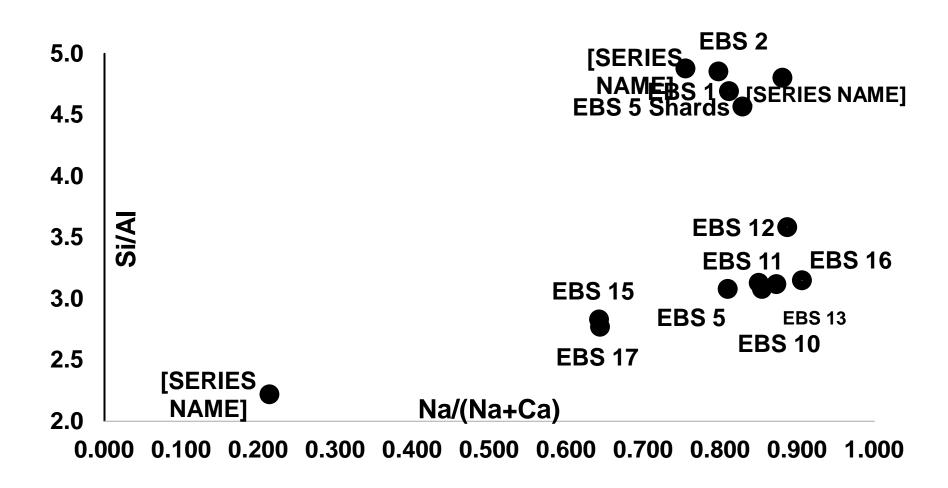
TOPICS

Zeolites

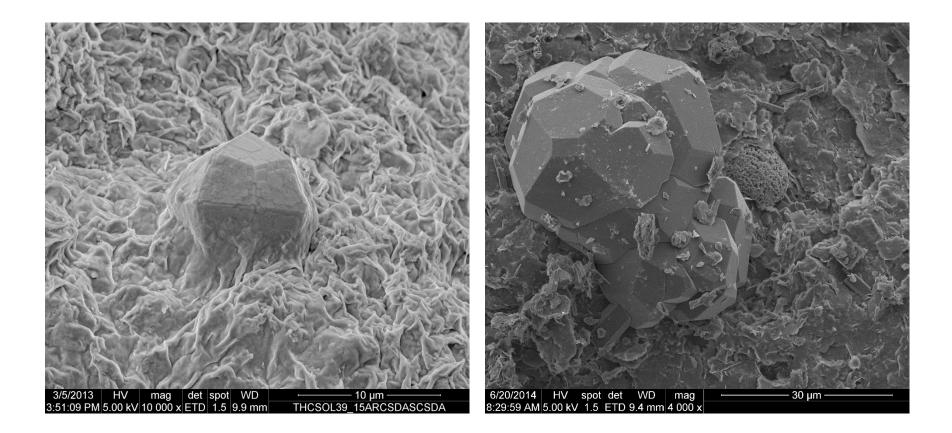
Steel

Copper

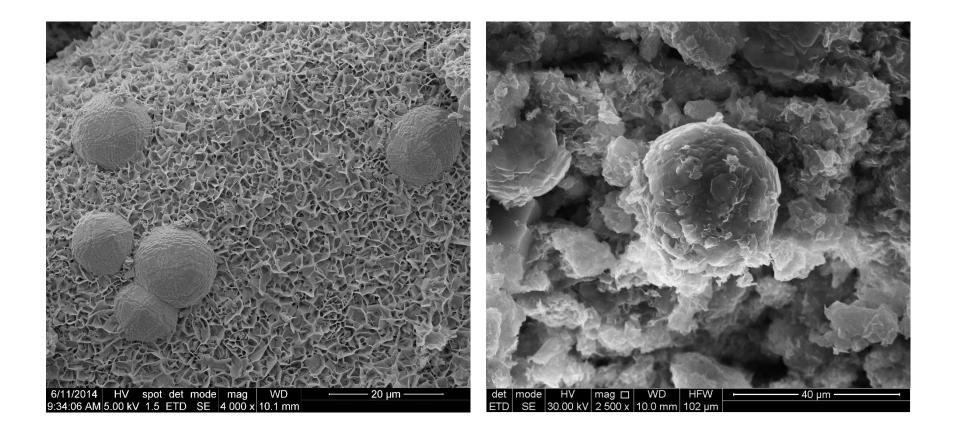
Clays (REMINDER)


- All experiments exhibit the same general clay mineral transformations
- $\blacksquare Montmorillonite \rightarrow Smectite \neq Illite$
- Good for this bulk chemistry ONLY(Stripa, WY)
- Good for this P,T,t trajectory
- No reduction in swelling due to illitization
- ■No change in sorption characteristics

Used
Fuel
Disposition

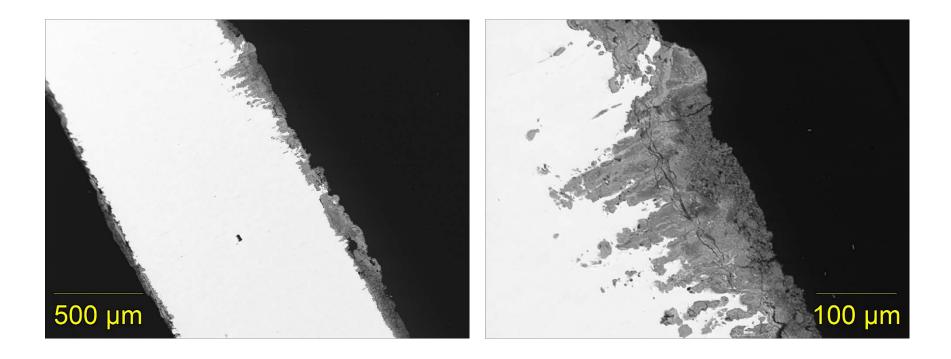


- As Colony EBS material reacts at high P,T new zeolites are formed Bulk Chemistry Dominated
- Without wall rock, Glass and/or Clinoptilolite → Analcime formed
- With Opalinus Clay wall rock only Wairakite formed (Ca-Analcime)
- With Opalinus Clay + Bentonite Analcime-Wairakite ss
- Pollucite Captures Cs

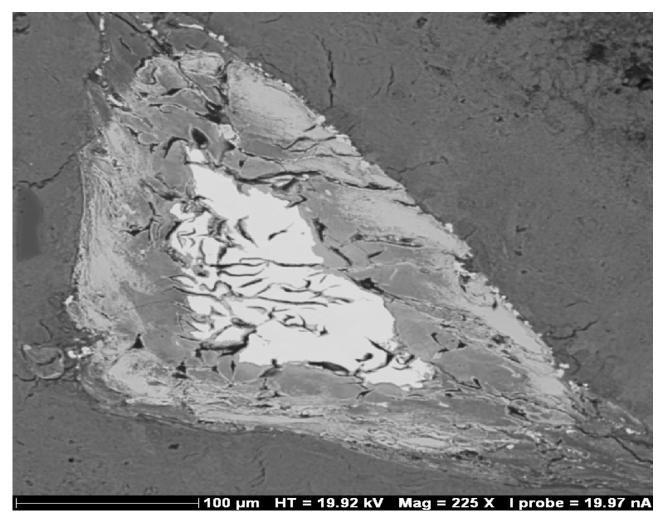

Used Si / Al ratio to Analcime percentage Fuel Disposition

Used Zeolite images Fuel EBS-4 (Analcime), EBS-14 (Wairakite)

Analcime/ Wairakite (EBS-15) / Pollucite (DB -16) Formation



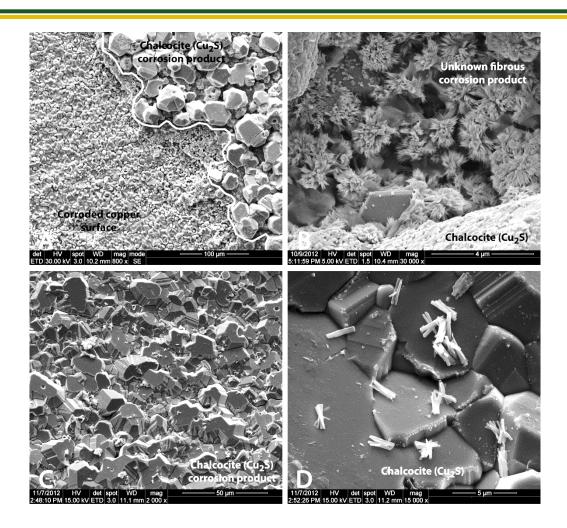
- At high P,T conditions Bentonite + Steel → Fe Saponite + Pentlandite +/- Pyrrhotite
- Fe Saponite is the dominant reaction, with Fe leaching from steel rim


-Steel corrosion rates - 0.1 µm d⁻¹ (43 µm a⁻¹) SS - 0.6 µm d⁻¹ (214 µm a⁻¹) LCS

- Stilpnomelane (mixed Fe) growth on Fe
- Preliminary data No corrosion rate (or mode) difference between 6 week and 6 month experiments

Used Pit Corrosion on Low Carbon Steel (EBS-18) Fuel Fe oxide, Pentlandite, Fe Saponite Disposition

Used Fuel Disposition Stipnomelane (K(Fe²⁺,Mg,Fe³⁺)₈(Si,Al)₁₂(O,OH)₂₇) reaction on native Fe



■Copper metal + H_2S +CI → Chalcocite (Cu₂S) + Atacamite (Cu₂CI(OH)₃

H₂S formed from breakdown of pyrite in bentonite

corrosion rates- 8.8-116 µm/yr. dependent on run time, brine composition, and bulk composition

Cu Corrosion images

SUMMARY

- Copper corrosion rates developed for defined composition and P,T,t (Chem Geol)
- Initial steel corrosion interface phases for generic EBS, Opalinus Clay wall rock
- First experimental data of Analcime-Wairakite ss from bentonite at repository conditions
- Pollucite generated from Cs contaminated Bentonite buffer

Future Work – FY17

- Finish host rock-bentonite baseline experiments and analyses.
- Continue with post-maximum temperature cooling effects.
- Quantify corrosion kinetics (SEM, EMP, Aqueous chemistry). Large data base needs analysis. Optical measurements needed
- Submit 1 journal articles on steel corrosion. Copper corrosion submitted to Chemical Geology
- Evaluate the steel corrosion products' chemical properties.
 - Thermodynamic constants
 - Radionuclide adsorption
 - Examine maximum passivation thickness
 - Evidence for pitting
- Investigate radionuclide 'zeolites' from engineered bentonite buffers.

Used
Fuel
Disposition

This project was funded by U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Technologies, Used Fuel Disposition Campaign. FT-16LA08030202

LA-UR-16-23848

Emily Kluk, Mike Rearick, Sarah Palaich, and Mike Cheshire provided assistance in the laboratories.