Used Fuel Disposition Campaign

Stress Corrosion Cracking of SNF Interim Storage Canisters: SNL Research Status

Charles Bryan and David Enos Sandia National Laboratories

UFD Workshop June 7-9, 2016 Las Vegas, NV

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5344 PE.

Environment

- Brine stability experiments, inland sites (new data on mixed salt assemblages)
- Data gaps

Localized Corrosion Modeling

- General model (Chen and Kelly 2010 approach)
- Data gaps

Experiment Plan for Localized Corrosion

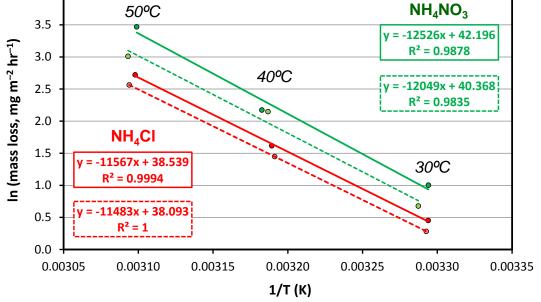
- Localized corrosion initiation/propagation
- Cathodic kinetics
- Mockup Residual Stress Measurements
- Status of Expert Panel Review
- Sample Materials Available

Used
Fuel
Disposition

ENVIRONMENT

Inland sites

4.0


Used Fuel **Disposition**

Brine Stability Experiments: NH₄NO₃ and NH₄CI degassing rates

NH₄CI

NH₄NO₃

		Rate,	Days to degas
T, ºC	RH	$mg/m^{-2} hr^{-1}$	1 g/m ⁻²
		Dry	
49.8	12.6	-15.20	2.7
40.6	12.5	-5.03	8.3
30.6	13.0	-1.57	26.5
	D	eliquesced	
50.2	63.9	-12.98	3.2
40.4	62.1	-4.26	9.8
30.7	72.9	-1.33	31.4

Γ <i>,</i> ≌C	RH	$mg/m^{-2} hr^{-1}$	1 g/m ⁻²	
-		Dry		
49.7	13.2	-32.10	1.3	
41.2	13.2	-8.78	4.7	
30.6	13.0	-2.72	15.3	
50.3	41.2	-20.28	2.1	
40.8	41.0	-8.56	4.9	
31.2	50.3	-1.97	21.2	

Rate,

-2. -1

Days to degas

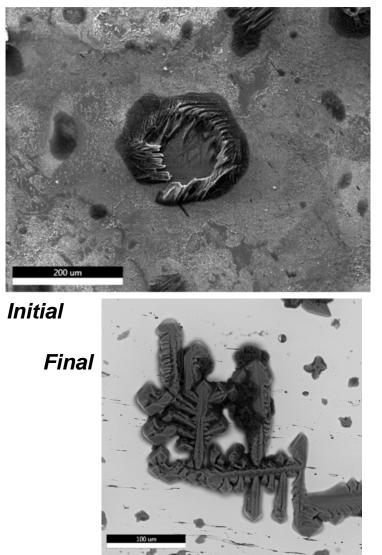
· -2

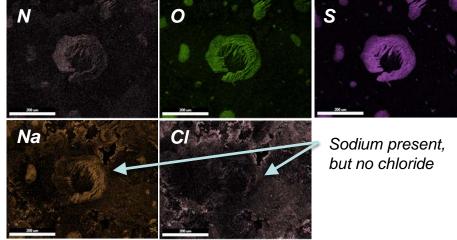
 $(NH_4)_2SO_4$ salt and brine are stable, and do not degas significantly

Salt	E _a , kJ/mol
NH ₄ NO ₃ , dry	104.1
NH ₄ NO ₃ , deliquesced	100.2
NH ₄ Cl, dry	96.2
NH ₄ Cl, deliquesced	95.5

Real dust aerosols are much smaller, and will degas even more rapidly.

Inland sites Brine Stability Experiments: Mixed Salt Assemblages

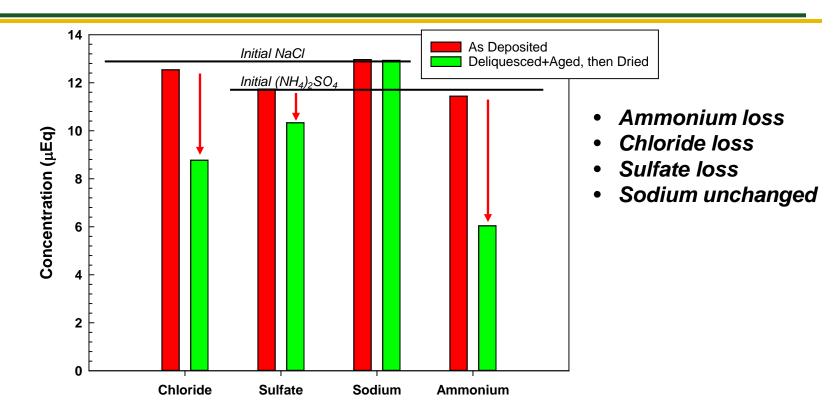

- In the solid state, salts such as NaCl and (NH₄)₂SO₄ are known to be thermally stable, and could accumulate on a canister
- However, once mixed salts deliquesce, then coupled ammonium/acid degassing can occur:


 $2NaCl(s) + (NH_4)_2SO_4(s) \leftrightarrow Na_2SO_4(s) + 2HCl(g) + 2NH_3(g)$

If these if the salts deliquesce and form a brine, chloride should be removed as well as ammonium

Inland sites

Brine Stability Experiments: (NH₄)₂SO₄ and NaCl Salt Mixture



- Salts deposited on 303SS surface using an airbrush
 - Ammonium sulfate deposited as an aqueous solution
 - Sodium chloride deposited using a methanol carrier (to prevent dissolution and mixing with ammonium sulfate)
- Some reaction in the as-deposited state
- Salt mixture dried at 50°C, 10% RH for 4 days, deliquesced at 50°C, 75% RH 24 hours, and re-dried at 10% RH
- Salts recrystallized as large grains.
- Partial conversion to Na₂SO₄ (insufficient time for complete reaction)

Environment: Inland sites

Brine Stability Experiments: (NH₄)₂SO₄ and NaCl Salt Mixture

- Salts extracted from surface of control sample and deliquesced sample
- Degassing took place, as evidenced by reduction in chloride and ammonium (ammonium loss = chloride loss plus sulfate loss)
- Incidentally deposited chloride salts (e.g. road salts or cooling tower salts) will only form persistent chloride-rich brines if the chloride deposition rate is greater than the ammonium deposition rate.

Environment: Data Gaps

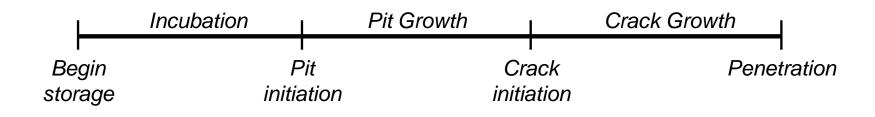
Inland sites:

Disposition

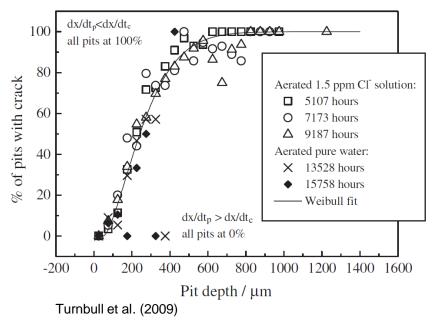
Used

Fuel

- Data on aerosol deposition rates (chlorides vs ammonium minerals)
- Composition of canister surface deposits.


Marine sites:

- Stability of marine brines
- Salt deposition rates and surface loads as a function of time, canister surface location.
- Effect of insoluble particles in dust?


Used
Fuel
Disposition

LOCALIZED CORROSION MODELING

SNL SCC Modeling

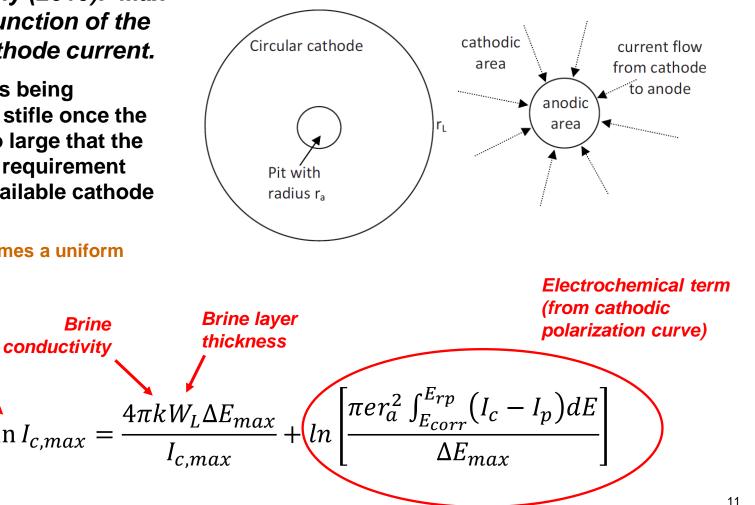
Implementation of a Maximum Pit Size Model

- Localized corrosion (pitting) is a precursor for SCC
- A SCC crack will initiate from a pit once a threshold pit size is reached (Kondo criteria) (more of a suggestion than a rule...)

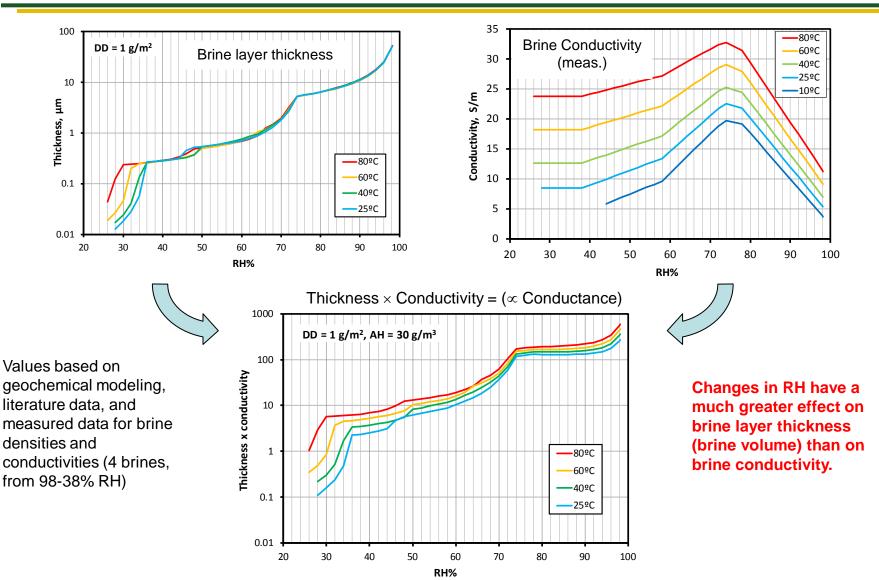
Estimation of the maximum pit size as a function of environmental conditions may potentially be used to estimate crack incubation times

Environmental Parameters for a Maximum Pit Size Model

Chen and Kelly (2010): Max pit size is a function of the maximum cathode current.

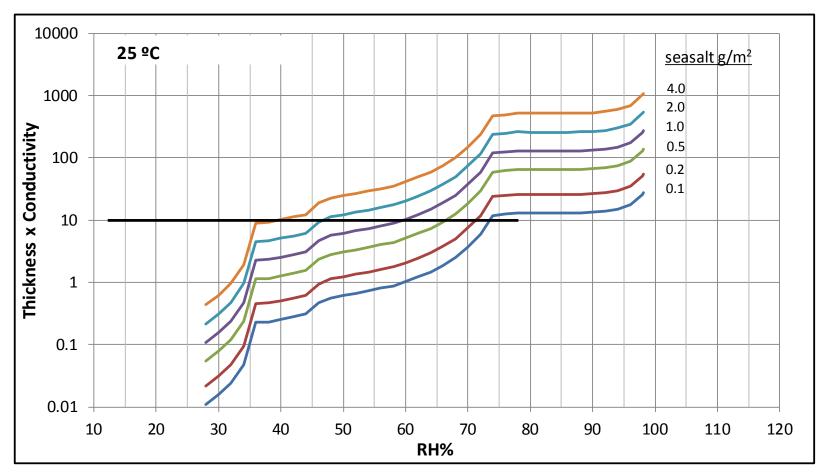

Pits modeled as being hemispherical, stifle once the pit becomes so large that the anodic current requirement exceeds the available cathode current.

Weakness: assumes a uniform brine layer...

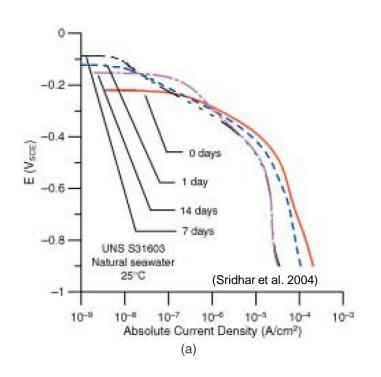

 $\ln I_{c,max}$

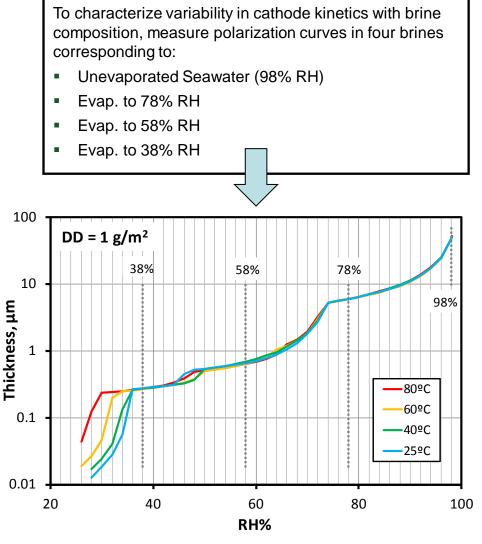
Max.

cathode current

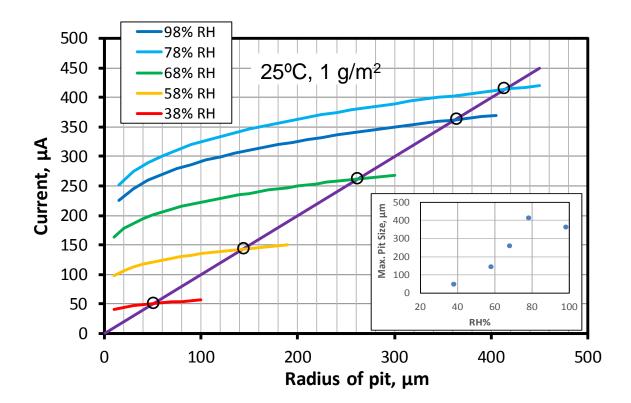


Used Fuel Evaporated Seawater Brine Properties Disposition


Used Fuel Evaporated Seawater Brine Properties Disposition


Effect of Salt Load—Is this why it is difficult to define a minimum salt load for SCC?

Measuring cathodic polarization data?


<u>Limited available data:</u> Cathodic polarization curve for seawater at 25°C, 316 SS

Example: Calculated Maximum Pit Sizes

Example of Chen and <u>Kelly</u> maximum pit size model results

Caveat: only seawater (98% RH) cathodic polarization data available at this time

Localized Corrosion Modeling: Data Gaps

Need better calibration and validation data

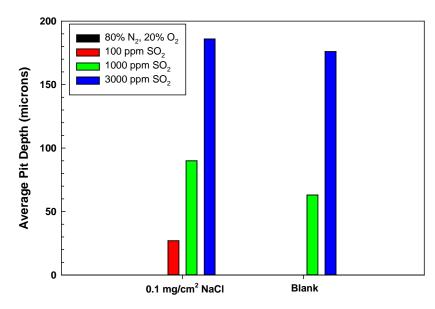
- Existing validation data are only for poorly-constrained field conditions
- Salt loads, RH conditions poorly defined.
- Lack of data for cathodic kinetics in concentrated brines formed by evaporated seawater
 - SNL will measure cathodic polarization curves in concentrated brines.
- Pit-to-crack transition criteria defined, but applicability may be limited.
 - Effects of surface roughness, surface preparation, etc.
 - Good data sets required to evaluate model applicability

Experimental work to assess localized corrosion processes will provide necessary data to calibrate and validate the maximum pit size model.

Used	
Fuel	
Dispos	itior

EXPERIMENT PLAN FOR LOCALIZED CORROSION

Characterization of Localized Corrosion under Atmospheric Conditions **Disposition**


Little data available on long term distribution of pits on atmospherically exposed 304SS

- Validation datasets from Chen and Kelly model over uncontrolled conditions
- Focus on maximum pit size, rather than distribution
- Times from 1-10 years to peak

Used

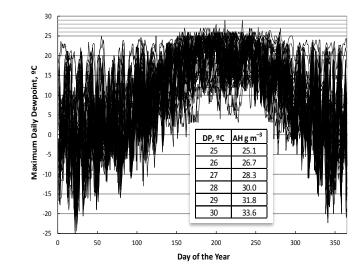
Fuel

Atmospheric contaminants matter, but aren't often considered

Atmospheric chemistry will be often more complex than just humidity

Example – Johnson, et. al, Corrosion Science, Vol. 22, no. 3, pp. 175-191 (1982)

Environmental Conditions for Testing **Disposition**

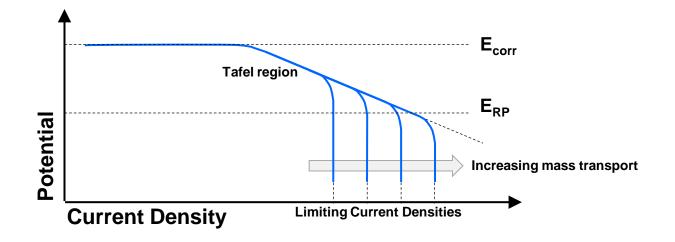

- Absolute humidity 30g/m³ maximum
- **Temperature Reasonable values relevant to sites**
- **Constant RH, Variable T**

Used

Fuel

Constant T, Variable RH

% RH	Temperature						
75	35						
70	35						
65	35						
60	35						
55	35	40					
50	35	40					
45	35	40	45				
40	35	40	45		55		
35	35	40	45	50			
30	35	40	45	50			



Test Matrix: Localized Corrosion

- Environmental conditions: 5
- Alloys: 304/304L, 304/304H
- Metallurgical conditions: annealed, sensitized (621°C, 24h)
- Surface conditions: 2
- Salt loading levels: 4 from 0.005 1 g/m² chloride
- Time intervals: 5 (1,3,6,12,24 months)
- Characterization of the localized corrosion process
 - Maximum pit size as function of time
 - Pit geometry as function of time
 - Pit number density and size distribution as function of time

Cathodic Kinetics

Schematic cathodic polarization curve: What do we need?

Scaling difficulties – extending from a bulk measurement to a thin film (establish if limiting or assume Tafel over potential range)

Cathodic Kinetics: Test Matrix

Experiments

- Solution chemistries at 25°C
 - ASTM ocean water (98% RH)
 - Concentrated to 78% RH (factor of 9.4)
 - Concentrated to 58% RH (factor of 68)
 - Concentrated to 38% RH (factor of 100)
- Temperatures: 3 (Ambient, 40C, 60C)
- Alloys: 3 (304, 304L, 316L)
- Test methodologies
 - Immersion (stagnant) (static tests did not work moving on the flowing conditions)
 - RDE or RCE (flowing)

Used
Fuel
Disposition

STRESS CORROSION CRACKING: PRELIMINARY TEST PLAN

Proposed Approach

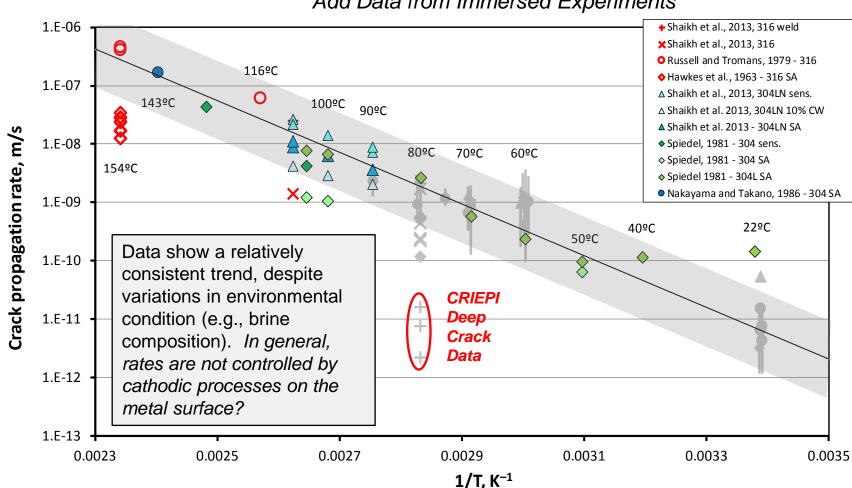
Isolate and independently evaluate different parameters.

- Material properties
 - Composition (304 / 304H / 316)
 - As-received and sensitized
 - We have purchased materials for use (304/304H)
- Brine Composition
 - Variations with RH and temperature.
- Effect of cathodic limitation due to thin brine films
 - Changes in crack growth rate (CGR)?
 - OR, changes in size of the active crack front (anode area)?

Sample Materials

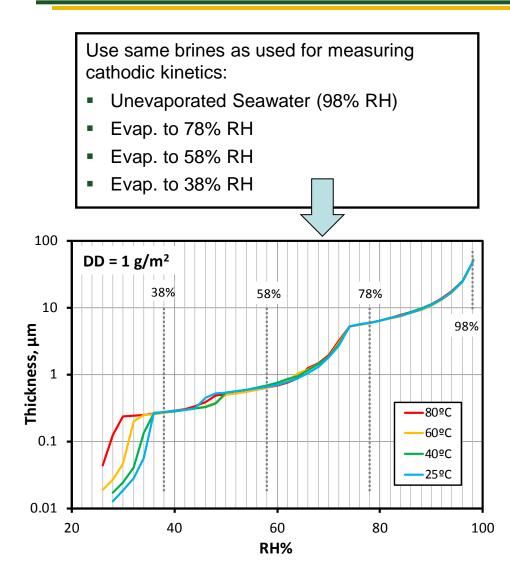
SNL purchased two 4' x 8' x ⁵/₈" plates (cut into 4' x 1' strips) of 304 SS for production of testing samples:

Material	С%	Co%	Cr%	Cu%	Mn%	Mo%	N%	Ni%	Р%	S%	Si%
304/304L	0.0216	0.1980	18.3105	0.3915	1.8280	0.2855	0.0889	8.1125	0.3250	0.0010	0.2510
304/304H	0.0418	0.1345	18.1930	0.4005	1.7495	0.2985	0.0844	8.0725	0.0335	0.0010	0.2930


Currently being used by CSM IRP members and SwRI

Canister mockup materials: Canister leftovers will be returned to SNL in June/July, and cut into pieces for testing

Material	С%	Co%	Cr%	Cu%	Mn%	Mo%	N%	Ni%	Р%	S%	Si%
Plate (304/304L)	0.0223	0.1865	18.1	0.4225	1.7125	0.318	0.0787	8.027	0.0305	0.0023	0.255
Weld Filler (308L) (lot 1)	0.014		19.66	0.16	1.7	0.11	0.058	9.56	0.025	0.01	0.39
Weld Filler (308L) (lot 2)	0.012		19.71	0.192	1.73	0.071	0.053	9.75	0.024	0.012	0.368


Mockup weld characterization will determine degree of sensitization, and samples will be made to duplicate that.

Available data

Add Data from Immersed Experiments

Brine Compositions

Brine compositions

- based on EQ3/6 calculations of evaporated seawater evolution at 25°C
- Predicted compositions at a given RH do not vary greatly with temperature

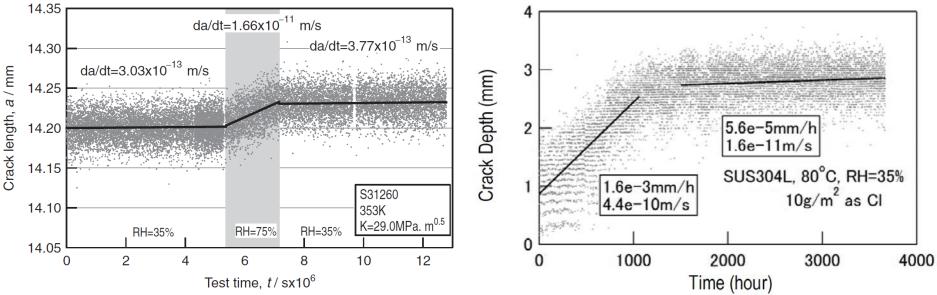
Component (molality)	ASTM seawater	78% brine	58% brine	38% brine
Na⁺	0.498	4.507	0.719	0.145
K⁺	0.011	0.096	0.144	0.032
Mg ²⁺	0.057	0.513	3.907	5.500
Ca ²⁺	0.011	0.015	0.003	0.003
CΓ	0.580	5.250	7.941	10.610
Br⁻	0.001	0.008	0.077	0.181
F	0.0001			_
SO4 ²⁻	0.030	0.196	0.289	0.059
BO ₃ ³⁻	0.0005	0.004	0.040	0.093
HCO ₃ ⁻	0.002	0.006	0.064	0.215

Test Matrix: Effects of Brine Composition

- Sample geometry: Compact tension
- Material: As received, sensitized 304, 304H
- Crack growth rate measurement technique: DCPD

Environments:

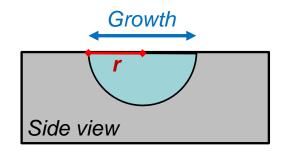
- ASTM Artificial oceanwater
- Concentrated to 78% RH (factor of 9.4)
- Concentrated to 58% RH (factor of 68)
- Concentrated to 38% RH (factor of 100)
- *Temperatures:* 25°C, 40°C, 60°C
- Loading conditions:
 - Fatigue pre-crack in air
 - Constant K if possible, or slowing declining K

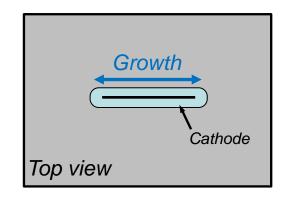

Used	Potential Effects of Atmospheric
Fuel	Conditions (Thin Brine Films) on SCC
Disposition	Crack Growth Rates

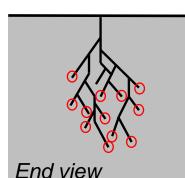
Observed (CRIEPI):

In both cases, CGR was measured by DCPD; CGR is not really a function of depth, but of crack area—to convert to depth, crack geometry (aspect ratio) assumed to be constant.

Tani et al., (2007) CT specimen, 312 SS. Crack growth rate low or zero (35% RH), increase RH (75% RH) and CGR increases markedly

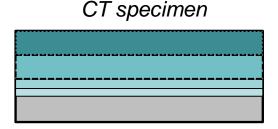

Shirai et al., (2011) 4-point bend specimen, 304 SS. Crack growth rate initially high, decreases as crack grows beyond ~ 3 mm.



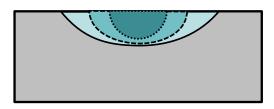

Potential Effects of Atmospheric Conditions (Thin Brine Films) on SCC Crack Growth Rates

Possible explanations for CRIEPI data

- <u>CT specimens</u> Lower RH = thinner brine film = smaller cathode = cathodic limitations on crack growth
- <u>4-point bend specimens</u> As elliptical crack grows, anode growth rate exceeds cathode growth rate = cathodic limitations on crack growth?
 - Cathode growth rate ∝ surface length of crack (2r)
 - Anode growth rate ∝ length of crack front (*πr*) *plus branching*

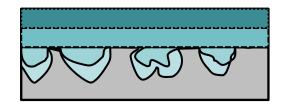

Potential Effects of Atmospheric Conditions (Thin Brine Films) on SCC Crack Growth Rates

Possible effects of cathodic limitation due to thin brine films


Anode morphology does not change, but growth rate slows. Uniform growth rate along anode

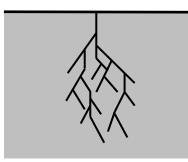
Semicircular crack, 4-point bend specimen

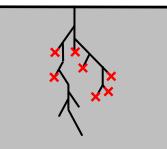
CGR varies along the anode and crack morphology changes?
Preferential growth near the surface (shorter transport distances)?



Used	Potential Effects of Atmospheric
Fuel	Conditions (Thin Brine Films) on SCC
Disposition	Crack Growth Rates

Possible effects, cont.


 Parts of anode stifle while other parts continue to grow. Crack front becomes non-uniform. (anode becomes smaller, but crack growth rate does not necessarily decrease in areas where growth is occurring)



 But cracks have a third dimension; anode area could shrink by having some branches stifle. Fewer active branches when cathode limited? (Would this result in higher K and faster crack growth?)

No cathodic limitation

Cathodic limitation

Test Matrix: Effects of Cathode Limitations due to Thin Brine Layer

- Sample geometry: 4-point bend, full-width EDM notch
- Material: As received, sensitized, cold worked 304, 304H
- Crack growth rate measurement technique: DCPD
- Environments:
 - Proof of concept:
 - Salt load 0.05 g Cl (as MgCl₂)
 - 40°C, 60% RH
 - If initial try is successful:
 - Salt loads from 0.01 to 5 g/m² as seawater
 - 25°C, 40°C, 60°C
 - 38, 58, and 78% RH (use only T, RH combinations possible on canister surfaces?)
 - Concentrated to 38% RH (factor of 100)
- Sample evaluation: Serial sectioning
- Goals—evaluate:
 - Crack front uniformity
 - Degree of branching
 - Effectiveness of DCPD at detecting initiation and growth
 - Evidence for changes in crack growth rate with depth, salt load, RH, due to cathodic limitations.

Used
Fuel
Disposition

STATUS OF EXPERT PANEL REVIEW

Expert Panel Summary

Panel

- Peter Andresen
- Alan Turnbull
- John Scully
- Rob Kelly

Topics Discussed

- Environment
- Localized corrosion
- Crack Initiation
- Crack propagation
- Experimental techniques
- Report in draft, will be finalized and released shortly

Summary

Environment

- Reactions with NH₄ phases may limit CI-bearing brine formation at inland sites
- Need more field data on canister surface deposits at inland and marine sites

Localized Corrosion Modeling

- Implemented maximum pit size model in SNL probabilistic model
- Max pit sizes should be limited by environmental conditions (T, RH, salt load)

Experiment Plan for Localized Corrosion

- Development and growth of pits as a function of T, RH, salt load, material properties, and surface finish
- Cathodic kinetics as a function of brine composition, temperature

Experiment Plan for Localized Corrosion

- Use CT specimens, immersed conditions to evaluate effects of brine composition on CGR
- Use 4-point bend specimens, full-width EDM notch to evaluate effects of cathodic limitations due to thin brine layers

Status of Expert Panel Review