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Overview 

 Environment 
• Brine stability experiments, inland sites (new data on mixed salt 

assemblages) 
• Data gaps 

 Localized Corrosion Modeling  
• General model (Chen and Kelly 2010 approach)  
• Data gaps 

 Experiment Plan for Localized Corrosion 
• Localized corrosion initiation/propagation 
• Cathodic kinetics 

 Mockup Residual Stress Measurements 
 Status of Expert Panel Review 
 Sample Materials Available 
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Inland sites 
Brine Stability Experiments: NH4NO3 and NH4Cl degassing rates 

Salt Ea, kJ/mol
NH4NO3, dry 104.1

NH4NO3, deliquesced 100.2
NH4Cl, dry 96.2

NH4Cl, deliquesced 95.5

y = -12526x + 42.196
R² = 0.9878

y = -12049x + 40.368
R² = 0.9835

y = -11567x + 38.539
R² = 0.9994

y = -11483x + 38.093
R² = 1
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NH4Cl

T, ºC RH
Rate,      

mg/m–2 hr–1

Days to degas   
1 g/m–2

49.8 12.6 -15.20 2.7
40.6 12.5 -5.03 8.3
30.6 13.0 -1.57 26.5

50.2 63.9 -12.98 3.2
40.4 62.1 -4.26 9.8
30.7 72.9 -1.33 31.4

NH4NO3

T, ºC RH
Rate,      

mg/m–2 hr–1

Days to degas    
1 g/m–2

49.7 13.2 -32.10 1.3
41.2 13.2 -8.78 4.7
30.6 13.0 -2.72 15.3

50.3 41.2 -20.28 2.1
40.8 41.0 -8.56 4.9
31.2 50.3 -1.97 21.2

Dry

Dry

Deliquesced

Deliquesced Real dust aerosols are 
much smaller, and will 
degas even more 
rapidly. 

4 
(NH4)2SO4 salt and brine are stable, and do 
not degas significantly 
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 In the solid state, salts such as NaCl and (NH4)2SO4 are known 
to be thermally stable, and could accumulate on a canister 
 

 However, once mixed salts deliquesce, then coupled 
ammonium/acid degassing can occur: 
 
2NaCl(s) + (NH4)2SO4(s) ↔ Na2SO4(s) +2HCl(g) + 2NH3(g) 
 

 If these if the salts deliquesce and form a brine, chloride should 
be removed as well as ammonium 
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Inland sites 
Brine Stability Experiments: Mixed Salt Assemblages 



Used 
Fuel  
Disposition  

 Salts deposited on 303SS surface using an airbrush 
– Ammonium sulfate deposited as an aqueous solution 
– Sodium chloride deposited using a methanol carrier (to 

prevent dissolution and mixing with ammonium sulfate) 
 Some reaction in the as-deposited state  
 Salt mixture dried at 50oC, 10% RH for 4 days, 

deliquesced at 50oC, 75% RH 24 hours, and re-dried 
at 10% RH 

 Salts recrystallized as large grains. 
 Partial conversion to Na2SO4 (insufficient time for 

complete reaction) 

N O 

Na 

S 

Cl Sodium present, 
but no chloride 
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Inland sites 
Brine Stability Experiments: (NH4)2SO4 and NaCl Salt Mixture 

Initial  
 

Final 
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 Salts extracted from surface of control sample and deliquesced sample 
 Degassing took place, as evidenced by reduction in chloride and ammonium 

(ammonium loss = chloride loss plus sulfate loss) 
 Incidentally deposited chloride salts (e.g. road salts or cooling tower salts) will 

only form persistent chloride-rich brines if the chloride deposition rate is 
greater than the ammonium deposition rate.  
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• Ammonium loss 
• Chloride loss 
• Sulfate loss 
• Sodium unchanged 

Initial NaCl 

Initial (NH4)2SO4 
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Environment:  Inland sites 
Brine Stability Experiments: (NH4)2SO4 and NaCl Salt Mixture 
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Environment:  Data Gaps 

 Inland sites: 
– Data on aerosol deposition rates (chlorides vs ammonium minerals) 
– Composition of canister surface deposits. 

 Marine sites: 
– Stability of marine brines 
– Salt deposition rates and surface loads as a function of time, canister 

surface location.   
– Effect of insoluble particles in dust? 

 
 



Used 
Fuel  
Disposition  

LOCALIZED CORROSION 
MODELING  
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Implementation of a Maximum Pit Size Model 

SNL SCC  Modeling 

• Localized corrosion (pitting) is a precursor 
for SCC 

• A SCC crack will initiate from a pit once a 
threshold pit size is reached  (Kondo 
criteria) (more of a suggestion than a rule…) 

Estimation of the maximum pit 
size as a function of 
environmental conditions may 
potentially be used to estimate 
crack incubation times 

Turnbull et al. (2009) 

Crack Growth 

Penetration Crack 
initiation 

Pit 
initiation 

Pit Growth Incubation 

Begin 
storage 
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Environmental Parameters for a 
Maximum Pit Size Model 

Chen and Kelly (2010):  Max 
pit size is a function of the 
maximum cathode current. 

Max. 
cathode 
current 

ln 𝐼𝐼𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 =
4𝜋𝜋𝜋𝜋𝑊𝑊𝐿𝐿∆𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚
+ 𝑙𝑙𝑙𝑙

𝜋𝜋𝜋𝜋𝑟𝑟𝑚𝑚2 ∫ 𝐼𝐼𝑐𝑐 − 𝐼𝐼𝑝𝑝 𝑑𝑑𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟
𝐸𝐸𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟
∆𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

 

Brine 
conductivity 

Brine layer 
thickness 

Electrochemical term 
(from cathodic 
polarization curve) 

Pits modeled as being 
hemispherical, stifle once the 
pit becomes so large that the 
anodic current requirement 
exceeds the available cathode 
current. 
Weakness:  assumes a uniform 
brine layer… 
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Evaporated Seawater Brine Properties 

Thickness × Conductivity = (∝ Conductance) 

Values based on 
geochemical modeling, 
literature data, and 
measured data for brine 
densities and 
conductivities (4 brines, 
from 98-38% RH)  
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Changes in RH have a 
much greater effect on 
brine layer thickness 
(brine volume) than on 
brine conductivity.   
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Evaporated Seawater Brine Properties 

Effect of Salt Load—Is this why it is difficult to define a minimum salt 
load for SCC? 
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Measuring cathodic polarization data? 
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To characterize variability in cathode kinetics with brine 
composition, measure polarization curves in four brines 
corresponding to: 
 Unevaporated Seawater (98% RH) 
 Evap. to 78% RH 
 Evap. to 58% RH 
 Evap. to 38% RH 
 

(Sridhar et al. 2004) 

Limited available data:  Cathodic 
polarization curve for seawater at 25ºC, 
316 SS 
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Example: Calculated Maximum Pit Sizes 
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Example of Chen and Kelly maximum pit size model results 

Caveat: only seawater (98% RH) cathodic 
polarization data available at this time 
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Localized Corrosion Modeling:  
Data Gaps 

 Need better calibration and validation data 
– Existing validation data are only for poorly-constrained field conditions 
– Salt loads, RH conditions poorly defined. 

 Lack of data for cathodic kinetics in concentrated brines formed 
by evaporated seawater 
– SNL will measure cathodic polarization curves in concentrated brines. 

 Pit-to-crack transition criteria defined, but applicability may be 
limited. 
– Effects of surface roughness, surface preparation, etc. 
– Good data sets required to evaluate model applicability  

 
Experimental work to assess localized corrosion processes will 
provide necessary data to calibrate and validate the maximum pit 
size model. 
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EXPERIMENT PLAN FOR 
LOCALIZED CORROSION 
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Characterization of Localized Corrosion 
under Atmospheric Conditions 

 Little data available on long term distribution of pits on 
atmospherically exposed 304SS 
– Validation datasets from Chen and Kelly model over uncontrolled 

conditions 
– Focus on maximum pit size, rather than distribution 
– Times from 1-10 years to peak 
– Atmospheric contaminants matter, but aren’t often considered 

18 
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(1982) 



Used 
Fuel  
Disposition  

Environmental Conditions for 
Testing 

 Absolute humidity – 30g/m3 maximum 
 Temperature – Reasonable values – relevant to sites 
 Constant RH, Variable T 
 Constant T, Variable RH 
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Test Matrix:  Localized Corrosion 

 Environmental conditions:  5 
 Alloys: 304/304L, 304/304H 
 Metallurgical conditions:  annealed, sensitized (621°C, 24h) 
 Surface conditions: 2 
 Salt loading levels: 4 from 0.005 – 1 g/m2 chloride 
 Time intervals: 5 (1,3,6,12,24 months) 

 
 Characterization of the localized corrosion process 

– Maximum pit size as function of time 
– Pit geometry as function of time 
– Pit number density and size distribution as function of time 
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Cathodic Kinetics 

 Schematic cathodic polarization curve:  What do we need? 
 
 
 
 
 
 
 
 
 

 Scaling difficulties – extending from a bulk measurement to a 
thin film (establish if limiting or assume Tafel over potential 
range) 
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Cathodic Kinetics:  Test Matrix 

 Experiments 
– Solution chemistries at 25ºC 

• ASTM ocean water  (98% RH) 
• Concentrated to 78% RH (factor of 9.4) 
• Concentrated to 58% RH (factor of 68) 
• Concentrated to 38% RH (factor of 100) 

– Temperatures:  3 (Ambient, 40C, 60C) 
– Alloys:  3  (304, 304L, 316L) 
– Test methodologies 

• Immersion (stagnant)  (static tests did not work—
moving on the flowing conditions) 

• RDE or RCE (flowing) 
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STRESS CORROSION 
CRACKING:  PRELIMINARY 

TEST PLAN 
 

23 



Used 
Fuel  
Disposition  

Proposed Approach 

 Isolate and independently evaluate different parameters. 
– Material properties 

• Composition (304 / 304H / 316) 
• As-received and sensitized 
• We have purchased materials for use (304/304H) 

– Brine Composition 
• Variations with RH and temperature. 

– Effect of cathodic limitation due to thin brine films 
• Changes in crack growth rate (CGR)? 
• OR, changes in size of the active crack front (anode area)? 
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Sample Materials 
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 SNL purchased two 4’ x 8’ x 5/8” plates (cut into 4’ x 1’ strips) of 304 SS for 
production of testing samples: 
 
 
 

Currently being used by CSM IRP members and SwRI 

 Canister mockup materials:  Canister leftovers will be returned to  SNL in 
June/July, and cut into pieces for testing 
 
 
 
 
 
 

Mockup weld characterization will determine degree of sensitization, and samples will be made to 
duplicate that.   

 

Material C% Co% Cr% Cu% Mn% Mo% N% Ni% P% S% Si%
304/304L 0.0216 0.1980 18.3105 0.3915 1.8280 0.2855 0.0889 8.1125 0.3250 0.0010 0.2510
304/304H 0.0418 0.1345 18.1930 0.4005 1.7495 0.2985 0.0844 8.0725 0.0335 0.0010 0.2930

Material C% Co% Cr% Cu% Mn% Mo% N% Ni% P% S% Si%
Plate 
(304/304L) 0.0223 0.1865 18.1 0.4225 1.7125 0.318 0.0787 8.027 0.0305 0.0023 0.255

Weld Filler 
(308L) (lot 1) 0.014 -- 19.66 0.16 1.7 0.11 0.058 9.56 0.025 0.01 0.39

Weld Filler 
(308L) (lot 2) 0.012 -- 19.71 0.192 1.73 0.071 0.053 9.75 0.024 0.012 0.368
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Data show a relatively 
consistent trend, despite 
variations in environmental 
condition (e.g., brine 
composition).  In general, 
rates are not controlled by 
cathodic processes on the 
metal surface? 
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Brine Compositions 
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Use same brines as used for measuring 
cathodic kinetics: 
 Unevaporated Seawater (98% RH) 
 Evap. to 78% RH 
 Evap. to 58% RH 
 Evap. to 38% RH 
 Component 

(molality)
ASTM 

seawater
78% 

brine
58% 

brine
38% 

brine

   Na+ 0.498 4.507 0.719 0.145 

   K+ 0.011 0.096 0.144 0.032 

   Mg2+ 0.057 0.513 3.907 5.500 

   Ca2+ 0.011 0.015 0.003 0.003 

   Cl– 0.580 5.250 7.941 10.610 

   Br– 0.001 0.008 0.077 0.181 

   F– 0.0001 — — —

   SO4
2 – 0.030 0.196 0.289 0.059 

   BO3
3– 0.0005 0.004 0.040 0.093 

   HCO3
– 0.002 0.006 0.064 0.215 

Brine compositions  
– based on EQ3/6 calculations of evaporated 

seawater evolution at 25ºC  

– Predicted compositions at a given RH do not 
vary greatly with temperature 
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Test Matrix:  Effects of Brine 
Composition 

 Sample geometry:  Compact tension 
 Material:  As received, sensitized 304, 304H 
 Crack growth rate measurement technique:  DCPD 
 Environments: 

– ASTM Artificial oceanwater 
– Concentrated to 78% RH (factor of 9.4) 
– Concentrated to 58% RH (factor of 68) 
– Concentrated to 38% RH (factor of 100) 

 Temperatures:  25ºC, 40ºC, 60ºC 
 Loading conditions: 

– Fatigue pre-crack in air 
– Constant K if possible, or slowing declining K 
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Potential Effects of Atmospheric 
Conditions (Thin Brine Films) on SCC 
Crack Growth Rates 
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Observed (CRIEPI): 

Tani et al., (2007) CT specimen, 312 SS.  Crack 
growth rate low or zero (35% RH), increase RH 
(75% RH) and CGR increases markedly 

Shirai et al., (2011) 4-point bend specimen, 
304 SS.  Crack growth rate initially high, 
decreases as crack grows beyond ~ 3 mm.   

In  both cases, CGR was measured by DCPD; CGR is not 
really a function of depth, but of crack area—to convert to 

depth, crack geometry (aspect ratio) assumed to be constant. 
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Potential Effects of Atmospheric 
Conditions (Thin Brine Films) on SCC 
Crack Growth Rates 

30 

 Possible explanations for CRIEPI data 
– CT specimens  Lower RH = thinner brine 

film = smaller cathode = cathodic 
limitations on crack growth 

– 4-point bend specimens  As elliptical crack 
grows, anode growth rate exceeds cathode 
growth rate = cathodic limitations on crack 
growth? 
• Cathode growth rate ∝ surface length of crack 

(2r) 

• Anode growth rate ∝ length of crack front (πr) 
plus branching 

 

r 

Growth 

Growth 

Cathode 

Side view 

Top view 

End view 
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 Possible effects of cathodic limitation due to thin brine films 
– Anode morphology does not change, but growth rate slows.  Uniform 

growth rate along anode 
 
 
 
 
 
 

– CGR varies along the anode and crack morphology changes? 
Preferential growth near the surface (shorter transport distances)?  

Potential Effects of Atmospheric 
Conditions (Thin Brine Films) on SCC 
Crack Growth Rates 

31 

Semicircular crack,  
4-point bend specimen CT specimen 
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 Possible effects, cont. 
– Parts of anode stifle while other parts continue to grow.  Crack front 

becomes non-uniform. (anode becomes smaller, but crack growth rate does 
not necessarily decrease in areas where growth is occurring) 

Potential Effects of Atmospheric 
Conditions (Thin Brine Films) on SCC 
Crack Growth Rates 

32 

– But cracks have a third dimension; anode area could shrink by having 
some branches stifle.  Fewer active branches when cathode limited?  
(Would this result in higher K and faster crack growth?) 

No cathodic limitation Cathodic limitation 
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Test Matrix:  Effects of Cathode 
Limitations due to Thin Brine Layer 

 Sample geometry:  4-point bend, full-width EDM notch 
 Material:  As received, sensitized, cold worked 304, 304H 
 Crack growth rate measurement technique:  DCPD 
 Environments: 

– Proof of concept: 
• Salt load 0.05 g Cl (as MgCl2) 
• 40ºC, 60% RH 

– If initial try is successful: 
• Salt loads from 0.01 to 5 g/m2 as seawater 
• 25ºC, 40ºC, 60ºC   
• 38, 58, and 78% RH  (use only T, RH combinations possible on canister surfaces?) 

– Concentrated to 38% RH (factor of 100) 
 Sample evaluation:  Serial sectioning 
 Goals—evaluate: 

– Crack front uniformity 
– Degree of branching 
– Effectiveness of DCPD at detecting initiation and growth 
– Evidence for changes in crack growth rate with depth, salt load, RH, due to cathodic limitations. 
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STATUS OF 
 EXPERT PANEL REVIEW 
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Expert Panel Summary 

 Panel 
– Peter Andresen 
– Alan Turnbull 
– John Scully 
– Rob Kelly 

 Topics Discussed 
– Environment 
– Localized corrosion 
– Crack Initiation 
– Crack propagation 
– Experimental techniques 

 Report in draft, will be finalized and released shortly 
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Summary 

 Environment 
– Reactions with NH4 phases may limit Cl-bearing brine formation at inland sites 
– Need more field data on canister surface deposits at inland and marine sites 

 Localized Corrosion Modeling  
– Implemented maximum pit size model in SNL probabilistic model 
– Max pit sizes should be limited by environmental conditions (T, RH, salt load) 

 Experiment Plan for Localized Corrosion 
– Development and growth of pits as a function of T, RH, salt load, material 

properties, and surface finish 
– Cathodic kinetics as a function of brine composition, temperature 

 Experiment Plan for Localized Corrosion 
– Use CT specimens, immersed conditions to evaluate effects of brine composition on 

CGR 
– Use 4-point bend specimens, full-width EDM notch to evaluate effects of cathodic 

limitations due to thin brine layers 
 Status of Expert Panel Review 
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