Numerical Estimation of the Spent Fuel Ratio

Samuel Durbin
Eric Lindgren
Jason Wilke
Sandia National Laboratories

Jon Margraf and Tim Dunn
Lawrence Livermore National Laboratory

SAND2016-5418 C
- Releases of spent nuclear fuel (SNF) by sabotage could have significant impacts to the public health and nuclear industry
 - Need to quantify the amount released (source term)
 - Subject of research for almost 40 years in US
 - Early studies were overly conservative due to lack of data
 - Model refinements as a result of testing

5.6 > 3 > 1.2
Spent Fuel Ratio (SFR)

- Concern that surrogate fuel pellets may aerosolize differently than actual spent fuel
 - Spent fuel pellets undergo changes to bulk material properties such as density and porosity due to irradiation
- Data needed to scale release fractions determined from previous large-scale tests conducted with surrogate (DUO$_2$)
- SFR quantifies the respirable aerosols produced by a high energy device (HED) acting on spent fuel compared to a surrogate material
 - SFR = $\frac{RF_{\text{Spent Fuel}}}{RF_{\text{Surrogate}}}$, Aerodynamic Equivalent Diameter (AED) < 10 μm
 - Comparisons must be made under identical conditions
 - Statistically significant number of experiments are required
 - Or modeling using acceptable, simplifying assumptions
- Underlying physics highly complex
Model developed over several decades with support from DOE and NRC

Spent Fuel Ratio (SFR)
- Scales results for DUO₂ to SNF
- Not definitively measured
- RF linearly scales with SFR

Small-scale testing
- Controlled energy experiments measuring respirable fractions

Large-scale testing
- Mockups of sabotage scenarios with truncated fuel assemblies using DUO₂
- Release fractions directly measured

Release Fractions

\[
RF = RF_{Test} \times SF_{Resp.} \times SF_{Press.} \times SFR
\]

Blowdown from cask
- Easily estimated from initial and final cask pressures
Large-Scale Cask Sabotage Testing

- **DOE sponsored full-scale test of obsolete truck cask (SAND82-2365)**
 - High energy density device (HED) directed at cask
 - 15×15 PWR truncated assembly with DUO₂
 - Cask and fuel unpressurized
 - ~3 g released in “respirable” range

- **GRS sponsored full-scale test mimicking CASTOR (Lange, et al.)**
 - 17×17 PWR assemblies with DUO₂ pressurized to 40 bar
 - First two tests (1 bar) released ~1 g
 - Third test (0.8 bar) 0.35 g

Significant Differences between DUO₂ and SNF

- **Bulk changes from irradiation**
 - Density decreases
 - Porosity increases
 - Pellet swells

- **Grain size decreases**
 - ~20 µm grains in fresh fuel
 - ~0.5 µm grains in high burnup structure

- **High Burnup Structure (HBS)**
 - ~60 µm thick rim
 - Small volume fraction
 - Rim burnup ~2x bulk burnup
 - Possible to simulate properties as \(f(r) \) with current modeling tools

Fig. 11. SEM Fractograph of the 73 GWd/tU Sample Periphery
Importance of the Transition Temperature

- **Brittle-ductile transition** $T_{B-D} = 1900 \, \text{K}
- **Brittle fracture if** $T_{\text{Fracture}} \leq T_{B-D}$
 - Fractures through the ceramic grains (intragranular)
 - Argument for fractures independent of grain size
 - Respirable generation for SNF and DUO$_2$ should be similar for same energy density (i.e. $\text{SFR} \approx 1$)
- **Ductile fracture if** $T_{\text{Fracture}} > T_{B-D}$
 - Fractures along grain boundaries (intergranular)
 - Size distribution of particles would be similar to grain size distribution
 - SNF would produce more respirable aerosols than DUO$_2$ (i.e. $\text{SFR} > 1$)

Previous SFR Measurement Attempts

- No definitive value to date
 - Large degree of experimental scatter
- Battelle Columbus Laboratories
 - $SFR = 0.42$ to 0.71
 - Analysis of BCL results by Sandoval (SAND82-2365)
 - $SFR = 2.5$ to 12
 - Subsequent review by Luna (SAND99-0963)
 - Current RF calculations assume $SFR = 3$
- Idaho National Laboratory
 - $SFR = 5.6$
 - Based on questionable extrapolation of wet sieve data
 - Value used in previous analyses
 - $SFR = 0.53$
 - Bulk aerosol measurements
- Sandia National Laboratories
 - Testing on different surrogate materials resulted in similar respirable release fractions
 - Provided confidence in using lower SFR estimate
 - No SNF testing

Current Modeling Approach

- **Model DUO$_2$ and SNF as continuum in shock physics code**
 - Interactions at the grain level not explicitly modeled

- **Same equation of state for DUO$_2$ and SNF**
 - Mie-Grüneisen

- **Differences in SNF explored by:**
 - Decreasing density (density \downarrow as burnup \uparrow) along with the P-Alpha porous material model

- **Quantify the average, internal energy density rise in the target material**

- **Aerosol generation estimated from empirical fit of DUO$_2$ and SNF data**
 - Quantifies mass fraction less than 10 μm AED as a function of internal energy density
 - Low energy density and non-UO$_2$ samples discarded for these analyses
Energy Density Determines Release

- **Empirical aerosol model**
 - Percent of sample smaller than 10 μm AED after subjected to sudden energy input
 - Additional surrogate data ignored for these analyses (CeO₂, SYNROC, concrete, and various glasses)

- **Respirable fraction \(\uparrow \) as energy density \(\uparrow \)
 - Roughly square root dependence

- **All SNF data for relatively low burnup**
 - Authors unaware of any high burnup data

Shock Physics Modeling

- High velocity copper jet impacts perpendicularly into fuel segment
 - 7 pellet segment of a 15x15 PWR fuel rod
- Modeling with CTH
 - Shock physics code developed at SNL
 - Explicit Eulerian code developed for solving high strain transient dynamics problems
 - Explosions and high velocity impact problems
 - Mie-Grüneisen EOS
 - P-Alpha crush model for porous media
Porous Material Modeling (P-α)

- P-Alpha used to model porous material behavior
 - $\alpha = \frac{\rho_{\text{solid}}}{\rho}$
- Initially elastic when stress is applied
- Pores are crushed as stress is increased
 - Irreversible process
 - Plastic compression
- Eventually all pores are eliminated
 - Material behaves as solid and follows solid Hugoniot curve (Mie Gruneisen)
Internal Energy Density Results

- Internal energy density for central fuel pellet only
- More energy absorbed as porosity increases
 - Additional work to compact material to solid density
 - 6% ↓ density ⇒ 33% ↑ energy density
- Simulations insensitive to choices in P-Alpha model
 - Varied initial and final crush pressures by 7.5× and 3× from baseline values, respectively
 - Less than 1% change to energy density
- Aerosol model is valid based on $T_{Fracture} < 1900$ K
 - Results assume $T_o = 300$ K
 - Max. energy density = 1680 J/cc
 - For storage $T_{Fuel} < 700$ K
 - Max. energy density = 1970 J/cc
 - Energy density = 3700 J/cc to reach $T_{Fuel} = 1900$ K
Spent Fuel Ratio Results

- CTH results trend lower than ALE3D
- $SFR \approx 1.20$ for 80 GWd/MTHM
- $SFR \approx 1.15$ for 60 GWd/MTHM
- SFR effectively linear with burnup (and density)
- Calculated SFR at least 2.5× smaller than previously assumed

<table>
<thead>
<tr>
<th>Density (g/cc)</th>
<th>Burnup (GWd/MTHM)</th>
<th>CTH SFR</th>
<th>ALE3D SFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.49</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>10.14</td>
<td>45</td>
<td>1.08</td>
<td>1.11</td>
</tr>
<tr>
<td>10.02</td>
<td>60</td>
<td>1.11</td>
<td>1.15</td>
</tr>
<tr>
<td>9.87</td>
<td>80</td>
<td>1.13</td>
<td>1.20</td>
</tr>
<tr>
<td>9.50</td>
<td>127</td>
<td>1.22</td>
<td>--</td>
</tr>
</tbody>
</table>
Rim Case Domains

- Uniform Density
 - One material

- Whole Rim
 - Two materials
 - Core 64 wt%
 - Rim 36 wt%
 - Two densities

- Split Rim
 - Three materials
 - Core
 - Front rim
 - Back rim
 - Two densities

Copper Jet →

- Material 1: 8.75 g/cm³, 223 GWd/t
- Material 2: 7.55 mm, 9.99 g/cm³, 64 GWd/t
Whole Rim Case

- Deposited energy density
 - Highest in rim
 - Lowest in core
 - Uniform in between

- Weighted average slightly lower than the uniform case
Partitioning of rim gives more spatial detail
- Overall similar response to single rim case
- Highest in front rim
- Lower in back rim
- Lowest in core

Weighted average slightly lower than the uniform case
Rim Case Summary

- **CTH Porous Rim Cases (9.50 g/cc average density)**
 - Extreme case (average burnup 127 GWd/MTHM)
 - Front rim gives max SFR=1.27
 - Wt’d avg rim and uniform cases similar
 - SFR = ~1.2 (by CTH, ALE3D probably higher)
 - Rim inclusion did not increase SFR

<table>
<thead>
<tr>
<th>Case</th>
<th>Pellet Mass (g)</th>
<th>Density (g/cc)</th>
<th>Burnup (GWd/MTHM)</th>
<th>Energy Density (J/cc)</th>
<th>Resp. (%)</th>
<th>SFR (–)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform</td>
<td>10.7</td>
<td>9.50</td>
<td>127</td>
<td>1985</td>
<td>1.98</td>
<td>1.22</td>
</tr>
<tr>
<td>Whole Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>6.8</td>
<td>9.99</td>
<td>64</td>
<td>1717</td>
<td>1.86</td>
<td>1.15</td>
</tr>
<tr>
<td>Rim</td>
<td>3.9</td>
<td>8.75</td>
<td>223</td>
<td>2105</td>
<td>2.03</td>
<td>1.25</td>
</tr>
<tr>
<td>Wt avg</td>
<td>10.7</td>
<td>9.50</td>
<td>127</td>
<td>1858</td>
<td>1.92</td>
<td>1.19</td>
</tr>
<tr>
<td>Split Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>6.8</td>
<td>9.99</td>
<td>64</td>
<td>1717</td>
<td>1.86</td>
<td>1.15</td>
</tr>
<tr>
<td>Front rim</td>
<td>1.9</td>
<td>8.75</td>
<td>223</td>
<td>2170</td>
<td>2.06</td>
<td>1.27</td>
</tr>
<tr>
<td>Back rim</td>
<td>1.9</td>
<td>8.75</td>
<td>223</td>
<td>2039</td>
<td>2.01</td>
<td>1.24</td>
</tr>
<tr>
<td>Wt avg</td>
<td>10.7</td>
<td>9.50</td>
<td>127</td>
<td>1858</td>
<td>1.92</td>
<td>1.19</td>
</tr>
</tbody>
</table>
Summary

- **Large-scale sabotage testing scaled by Spent Fuel Ratio (SFR)**
 - All tests used DUO$_2$ surrogate
 - Need SFR for source term analyses

- **Previous testing efforts to define SFR were indeterminate**
 - Large uncertainties in SFR

- **Modeling alternative to additional testing demonstrated**
 - Shock physics codes excellent for providing insight into SFR
 - Preliminary numerical investigations indicate $SFR \approx 1$
 - Well within values defined by SFR test data
 - Not confirmed by new test data
 - Simulations of high burnup fuel (80 GWd/MTHM)
 - Model also used for even higher porosity and radius dependent calculations
 - Reducing SFR decreases calculated release
 - **Significant impact possible**