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Abstract

Accurately representing the local solar variability at timescales relevant to distribution grid operations (30-seconds and
shorter) is essential to modeling the impact of solar photovoltaics (PV) on distribution feeders. Due to a lack of available
high-frequency solar data, some distribution grid studies have used synthetically-created PV variability or measured
PV variability from a different location than their study location. In this work, we show the importance of using
accurate solar PV variability inputs in distribution studies. Using high-frequency solar irradiance data from 10 locations
in the United States, we compare the ramp rate distributions at the different locations, use a quantitative metric to
describe the solar variability at each location, and run distribution simulations using representative 1-week samples from
each location to demonstrate the impact of locational solar variability on the number of voltage regulator tap change
operations. Results show more than a factor of 3 difference in the number of tap change operations between different
PV power variability samples based on irradiance from the different locations. Errors in number of tap changes of up to

-70% are found when using low-frequency (e.g., 15-minute) solar variability.

1. Introduction

Understanding the impact of interconnecting solar
photovoltaics (PV) on a distribution electric grid is
crucial to maintaining the integrity of the electric grid.
Underestimating the effects of PV can lead to grid
damage and blackouts, while overestimating the PV
impact will unduly limit the installations of this
renewable energy resource. The main concern about PV
interconnection is that PV is a wvariable generation
resource; its output is not constant and depends on the
amount of incident solar radiation. This variability can
lead to voltage fluctuations which cause increased use of
regulation equipment (e.g., on-load tap changers) and
therefore increased grid maintenance costs [1].

To understand the impact of PV, it is necessary to
understand the local high-frequency solar variability.
High-frequency (30-second resolution or better) data on
solar variability is critical since tap changers typically
have time constants shorter than 1-minute, some as short
as 30-seconds. High-frequency solar variability has been
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quantified at a few specific locations previously: Woyte,
et al. [2] used up to l-second irradiance measurements in
Germany and Belgium; Perez, et al. [3] used the
20-second measured irradiance data from the ARM
network in northern Oklahoma and southern Kansas;
Lave, et al. [4] used 1l-second irradiance measurements
from a network in San Diego; and Hinkelman [5] used
1-second measured irradiance data from Oahu, Hawaii.

Understanding the solar variability at a few select
locations, though, may not be helpful to an operator
whose distribution grid is not located near one of these
known locations. To create more high-frequency data,
some studies have taken widely available low-frequency
data and downscaled it to represent high-frequency data.
Wegener, et al. [6]; Hansen, et al. [7]; and Hummon, et
al. [8]; [9] have all presented methods for producing
high-frequency data from low-frequency measurements.
However, it is not clear that these downscaling methods
will be accurate for distribution-scale applications, as
they were not intended for ([7] and [8]) or were not
well-validated at ([6] and [9]) 30-second and shorter
timescales.

The lack of representative, high-frequency solar
variability samples has led some distribution simulations
to use synthetically-created solar variability profiles or
measured solar variability from a different location than
the location of the distribution feeder under study.
Godfrey et al. [10] assumed a synthetic PV power ramp
of 10 % per second as representative of cloud transients,
but did not provide a physical justification for this ramp



rate. While that study focused on communications to
dispatch distributed storage units, they do mention that
such a profile would lead to a shortened life for the tap
changer and possible voltage quality issues on the feeder.
Quiroz and Reno [11] used irradiance data from southern
Colorado for study of a feeder in central Utah. The
irradiance was scaled to account for the different
intensity of clear-sky irradiance between the two
locations, and shifted to represent the accurate sunrise
and sunset times in Utah. In both studies, since
measured data was not available at the feeder being
studied, there was no way to know if the variability
profiles used were representative of the actual variability.

The focus of this work is to show the importance of
using representative solar variability inputs when running
distribution grid simulations. In a related study, Bank and
Mather [12] differentiated between clear and cloudy days,
and overall found that tap change operations were higher
on the clear days due to the larger magnitude of PV power.

We explore the impact of different solar variability
profiles collected at different locations on tap change
operations. The 10 locations across the United States
with measured high-frequency irradiance that were used
for this study are described in Section 2. Section 3
discusses the ramp rate definition we used and shows the
ramp rate distributions for each of the locations. In
Section 4, we propose a variability metric that is useful
for quantifying high-frequency variability and use it
compare both the annual and daily variability between
the different locations. Section 5 presents results of
distribution feeder simulations to determine the number
of tap change operations caused by sample PV profiles
for each of the 10 locations. Finally, in Section 6, we
present the conclusions describing the importance of
using representative solar inputs.

2. High-Frequency Data

We assembled a database of high-frequency (time
resolution of 30-seconds or better) global horizontal
irradiance (GHI) measurements from 10 different
locations in the United States. We chose to use GHI data
to allow for direct comparisons between the different
locations. Plane of array (POA) irradiance measurements
with varying tilts would make comparisons between sites
impractical.

The site locations are shown on a map in Fig. 1, and
details about the date ranges of available data and time
resolution of the data are listed in Table 1. Albuquerque
(PSEL) was collected at Sandia National Laboratories
while Albuquerque (Mesa) was collected approximately
10 km southwest. These two sites will allow for
validation of methods, as similar results should be
obtained for each site due to their close proximity.

As close to one year of data as possible was used to
capture all seasonal trends. The Albuquerque Mesa and
Lanai sites only had 11 months of data, but are still
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Figure 1: Map of high-frequency data.

Table 1: Data description.

Time

Res.
2/2013 - 12/2013 3s
2/2013 - 12/2013 1s
5/2013 - 4/2014 10s
2/2010 - 12/2010 1s
1/2010 - 12/2010 1s
12/2013 - 11/2014 2s
9/2012 - 8/2013 1s
3/2010 - 2/2011 1s
1/2012 - 12/2012 30s
1/2011 - 12/2011 1s

Location Data Used

Albuquerque, NM (PSEL)
Albuquerque, NM (Mesa)
Boise, ID

Lanai, HI

Las Vegas, NV
Livermore, CA
Mayaguez, PR

Oahu, HI

Sacramento, CA

San Diego, CA

expected to be representative of annual trends. The
Albuquerque PSEL site has a long period of record, but
data was only used from days when data was also
available at the Albuquerque Mesa site to allow for direct
comparisons between the two Albuquerque sites. The
Mayaguez site had intermittent data outages lasting up
to two months, so may not be fully representative of
annual trends. However, since our goal in this work is
show how variability differences can impact distribution
feeders, we include Mayaguez in our analysis.

3. Ramp Rate Distributions

Using the collected high-frequency data, we first
computed irradiance ramp rates (RRs). We chose to look
in detail at the 30-second RRs since tap changers on
distribution feeders can have time constants as short at
30-seconds.

There has been some debate as to what definition of
ramp rate is best for PV wvariability studies. Some
authors have defined ramp rates as the instantaneous
differences in power output separated by the timescale of
interest, normalized by the timescale (e.g., Eq. 1 in [13]).
Others have looked at the magnitude and duration of
ramps using assumed tolerances (minimum time offset
from previous ramp and minimum magnitude) for
defining individual ramps (e.g., Fig. 1 in [14]).



The data used in this study varies in time resolution
from 1-second to 30-seconds (Table 1). Due to data
collection methods, the longer time resolution data
represents averages over the time interval. For example,
to create the 30-second data recorded in Sacramento, the
irradiance sensor sampled at 1 Hz, then once every
30-seconds the average irradiance over the past
30-seconds was recorded. Because of this, neither the
instantaneous differences nor the magnitude and duration
methods will produce consistent ramp rates over the
different resolutions of measured data: if data at the
same location were recorded at both 1-second and
30-second intervals, different 30-second ramps would be
computed from the two different resolution timeseries.
Therefore, we chose to use the moving averages definition
of ramp rates (Eq. 7.1 in [15]):

t+At

t—At

where RRLYT(t) is the irradiance ramp rate for timescale
At at time t. This definition is consistent across the
different data time resolutions since the 30-second ramps
are the differences between 30-second averages of the
data.

From the irradiance ramp rates computed using
Eq. 1, we computed the annual distribution of ramp rates
for the irradiance data at each location. Only ramps that
occurred when the solar altitude angle was greater than
10° were included, to filter out nighttimes and times of
very low solar altitude angles when the irradiance sensors
are prone to higher angular response errors. Additionally,
we used only the magnitude not the sign of the ramps,
which is common practice since positive and negative
ramps typically have similar probabilities of occurrence.
The 30-second distributions of ramp rates are shown in
Fig. 2. Note that the y-axis is P(RR > RRy), which is
the inverse of typical cumulative distribution functions
(cdfs) that describe P(RR < RRy), but allows for easier
readability of extreme ramp rate magnitudes.

The cumulative distributions show that, for example,
only 3% of ramp rates in Sacramento were larger than
50 W m2 in 30-seconds (labeled 5% in Fig. 2), but that
20% of ramp rates in Oahu were larger than 50 W m™ in
30-seconds.

4. Quantifying Solar Variability Based on Ramp
Rate Distributions

4.1. VSgrRaist Variability Metric Definition

The RR distributions presented in Section 3 are
useful for understanding the probability of occurrence of
specific magnitudes of ramp rates, but it is difficult to
quantitatively compare one location to another. Since
large magnitude ramps which occur frequently have the
largest impact on grid operations, we propose a metric

called the variability score from the RR distribution,
V SRrRaist, which is defined as the maximum value of
ramp rate magnitude (RRy) times ramp rate probability,
scaled by 100 to allow for easier to interpret values (i.e.,
whole numbers rather than decimals):

V SrRaist(At) =
100 x maz[RRy x P(|JRRat| > RRo)]. (2)

In Eq. 2, RRy ranges from the minimum to the
maximum ramp rate. RRy is either a percent of
1000Wm=2 (STC irradiance) for irradiance ramps, or a
percent of rated capacity for power ramps. The
probability P(|RRa:| > RRy) is expressed as a percent.

For example, for the Oahu distribution shown in
Fig. 2, the maximum ramp rate magnitude times
probability occurred when RRy = 20.0% and
P(|RRS{T| > RRy) = 8%, thus combining for a
maximum value of 1.6%. With the scaling factor of 100
in Eq. 2, this becomes 160%. However, since the % was a
combination of two different units (% of capacity ramp
rate and probability of ramp rate), it does not have
physical meaning and so we choose to drop it. Therefore,
for the annual distribution of ramp rates at Oahu,
VSGHL (30s) = 160.

Following the definitions in paragraphs, V.Sgrpdist
range from 0 (no variability) to 10000 (all ramps are
100% of capacity). Larger V. Sgrgraist values indicate more
variability.

We note that our choices of scaling factor and
expressing the ramp magnitudes and probabilities in
percentages do not impact our comparison of V.Sggrgist-
If using a different scaling factor or using decimals
instead of percentages, the range of possible V Sgrgragist
values would change but the relative differences between
V SkrRaist values would stay the same.

The V SgrRraist metric is based directly on the ramp
rates in irradiance or power. While other works (e.g., [16]
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Figure 2: 30-second cumulative distributions of GHI ramp rates from
1-year of data at each location.



and [4]) have examined the variability of the clearness
(irradiance normalized by extraterrestrial irradiance) or
clear-sky index (irradiance normalized by expected
clear-sky irradiance on the Earth’s surface), they did so
to remove the diurnal and seasonal cycles to focus on
understanding cloud-caused fluctuations. In this work,
since we address the impact of solar variability to the
electric grid, diurnal and seasonal fluctuations are
important and must not be eliminated. For example, a
clear-sky index change of 0.5 in the early morning in
winter will have a much smaller impact on PV power
production and hence electric grid operations than a
clear-sky index change of 0.5 midday in the summer.
Thus, all variability analysis presented here is based on
irradiance or power output directly rather than
normalized values.

4.2. Annual VSGHL (30s) at each Location

Based on the distributions of 30-second GHI ramp
rates over l-year (Fig. 2), the ramp rate magnitudes
times probabilities are shown in the left side of Fig. 3.
The maximum value of each ramp rate magnitude times
probability curve is the VSGHI (30s) based on the
annual distribution of ramp rates at that location; these
are shown in the bar chart on the right of Fig. 3. The
VSGHL (30s) values are consistent with typical weather
patterns: Sacramento, Las Vegas, and Livermore (sunny
locations) are the least variable, while the island
locations of Oahu, Mayaguez, and Lanai (which are often
partly cloudy) are the most variable. The two
Albuquerque sites have very similar V Spgrqist values, as
expected due to their close proximity.

4.8 VSggjist Variation with Timescale

GHI ramp magnitudes vary with timescale [4]: as the
timescale increases, so do the ramp magnitudes due to
the longer time interval over which solar irradiance can
deviate from its previous value. Since V Sgrpaise 18 based
on ramp rate distributions, VSgrr4ist values are also
expected to increase with increasing timescale. To
examine this behavior, we calculated ramp rates using
Eq. 1 at timescales At = 1s, 10s, 30s, 60s, and 3600s for
each location with sufficient temporal resolution (e.g.,
Sacramento had only 30-second resolution so 1-second
and 10-second ramp rates could not be resolved). From
annual distributions of ramp rates at these various
timescales, we used Eq. 2 to compute VSgngist for each
location and timescale pair, as shown in Fig. 4.

For all locations, VSggfist increases with increasing
timescale. At all timescales, the ranking of locations from
least variable to most variable is similar.  For the
1-second, 10-second, 30-second, and 60-second timescales,
VSGHL  values vary by approximately a factor of 10
from the least wvariable location (Las Vegas or
Sacramento) to the most variable location (Oahu). At
the 1-hour timescale, ramps become dominated by
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Figure 4: Annual ngg dfist values for each location over RR
timescales At = 1s, 10s, 30s, 60s, and 3600s. Values are not plotted
for timescales/location pairs without sufficient temporal resolution
(see Table 1).

diurnal effects of the sun rising and setting rather than
the cloud-caused fluctuations that dominated at shorter
timescales. Thus, there is less spread by location in the
VSGHL (3600s) values since all locations experience
similar diurnal cycles as they are all at mid-latitudes
(latitudes range from 18.2°N to 43.6°N).

4-4. Daily VSGHL (30s) Examples and Distributions

While sections 4.2 and 4.3 present V Sgrpraist values
computed from annual distributions of ramp rates,
Eqn. 2 can also be applied to daily distributions of ramp
rates to quantify daily variability. Just as for the annual
distributions, only ramps that occurred when the solar
altitude angle was greater than 10° were included in the
daily distributions.

Fig. 5 shows the daily distributions of ramp rates for
all 365 days considered at Oahu, color coded by their
daily VSGHL (30s) values. The annual distribution of
ramp rates (from Fig. 2) is also included for direct
comparison. The gradient of low to high daily
VSGHL (30s) values from the bottom left to top right of
the plot is distinct and is consistent with an intuitive
ranking of variability: distributions with higher
probabilities of large ramps (distributions towards the
top right) should have higher variability scores.

To compare the daily variability between the
locations, Fig. 6 shows histograms of daily V.SGHT (30s)
values at each location. Also included in Fig. 6 are black
dashed lines showing the annual V.SGHL (30s) values to
demonstrate how the daily values deviate from the
annual value. The locations with low annual
VSGHL (30s) scores had many daily VSSHL (30s)
scores between 0 and 50, indicating many mostly or fully
clear days. At Oahu, daily VSGHL (30s) values follow a
nearly uniform distribution, especially for V.SGHL (30s)
values between 0 and 300. Lanai and Mayaguez had
peaked distributions, with values between 100 and 150 at
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Figure 3: (Left) Ramp rate magnitudes times probabilities for annual distributions of 30-second GHI ramp rates, with dots marking maximum
values. These maximum values are the annual nggdlist (30s) values, which are re-plotted in the bar chart (Right) for visual comparison.

GHI
VSgraist30S)

Oahu
T 500

= = =annual distribution
—— daily distributions ||

S 400
2

o 300
N
85 200
a4

o

T 100

0% '
0% 5% 10% 15% 20% 25% 30% 35% 40%
RR; [% of 1000 W m™?]

Figure 5: Daily 30-second cumulative distributions of GHI ramp
rates at Oahu. The colors of each distribution indicate the daily
VSGHI (30s) value. The annual distribution (as in Fig. 2) is
included as the black dashed line for reference.

Lanai and between 50 and 100 at Mayaguez occurring
most often.

4.5. VSgrraist Compared to the Variability Index

The variability index (VI) [17] is an established
metric used to compare variability over different days,
and it can also be applied to compare variability at
different locations. The VI is calculated as:

S/ RRGHI (1) + AP
t

5>/ RRSST(6)? + AP
t

VI(At) = (3)

where CSI is the calculated clear-sky irradiance. To
ensure that the VSgggiss metric defined here is
reasonable, Fig. 7 shows a scatter plot of daily

VSGHL (30s) versus daily VI(30s). The high correlation
between VI and VSgrpaist (Pearson correlation
coefficient = 0.99) confirms that V.Sgraist is consistent
with VI at quantifying the variability.

Even though V Sgrgr4ist and VI are consistent, we feel
that VSgRpaist is an improvement over VI due to its
simplicity. The VI requires a clear-sky model to compute
the clear-sky irradiance. While GHI clear-sky models are
common and validation has shown good performance
[18], fixed tilt and single-axis tracking clear-sky models
are significantly more complicated and are not
well-validated.  Further complexity arises in creating
clear-sky models of power output, due to the added
variables of soiling, tracking algorithms, failures, etc.
Since V. Sgrraist is computed directly from the ramp rate
distribution, it does not require a clear-sky model and so
can be just as easily applied to POA, tracking, and power
timeseries as it can to GHI timeseries. ~Though, as
discussed in section 5.1, the VSgrggiss computed from
GHI will be different from the V.Sgrrq4is¢ computed from
POA or power, even at the same location.

5. Impact to Distribution Grid

In Sections 3 and 4, we computed statistics describing
the variability of GHI at each location. However, GHI
variability does not directly determine the impact of PV
variability to the distribution grid. In this section, we use
sample weeks of PV power output created from
irradiance samples at each location to determine the
effect of PV wvariability on the number of tap change
operations of a voltage regulator in a detailed simulation
of a real distribution system.

Since many assumptions must be made (PV size and
location, feeder layout, etc.) to run distribution grid
feeder simulations, the results in this section are meant
to be illustrative of the impact that different irradiance



profiles can have on the number of voltage regulator tap
change operations. To understand the unique impacts of
different scenarios to voltage regulation equipment,
simulations with the exact PV sizing and feeder layout
would be required.

5.1. Weekly PV Power Samples for Distribution Studies

It was mnot practical to run the distribution
simulations for a full year due the long amount of
computer processing time required for simulations.
Instead, we chose a ”typical” week from each location for
use in the distribution simulations. The typical week was
chosen by finding the week at each location that had a
ramp rate distribution with a VSgg({ist value closest to
the annual VSgngist value. At all locations, the week
chosen had a VSgng’ist value within 0.5% of the annual
VSGHL | value.

Using the week selected at each location, the irradiance
was used to model the power output of a 3MW single-axis
tracking PV power plant. This was done by:

1. smoothing the point sensor GHI based on the
spatial coverage of a 3MW PV plant (~18.5 acres)
to determine the plant-average GHI using the
wavelet variability model (WVM) [19], with cloud
speeds chosen as in [20]

2. translating the plant-average GHI to represent
plant-average POA irradiance incident on a
single-axis tracking plane using the Hay and Davies
transposition model [21]

3. converting the plant-average POA irradiance to AC
power output using the Sandia Array Performance
Model [22] and the Sandia Inverter Performance
Model [23].

The weekly power output samples for each location
are shown in Fig. 8. Consistent with their low nggjist
values, Las Vegas, Livermore, and Sacramento all had

multiple clear days in their weekly samples. Conversely,
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Lanai, Oahu, and Mayaguez, all locations with high
VSgngist values, had many highly variable days in their
sample weeks.

The weekly samples shown in Fig. 8 are power, not
GHI. The steps used to convert the measured point
sensor GHI to 3MW single-axis tracking PV plant power
output all affect the variability. The spatial smoothing
over the plant will reduce the variability. The translation
of GHI to single-axis plane of array will increase the
power output, increasing the ramp rates and hence the
variability. =~ The irradiance to power conversion may
slightly reduce the variability due to inverter clipping.
Thus, for the power samples we must quantify the
variability using V.85, as shown in Fig. 9.

In comparing Fig. 9 to Fig. 3, we see that
VShe. < VSGHI . at all locations except Boise. This
reduction in wvariability is mostly due to the spatial
smoothing across the 3MW PV plant. In the wavelet
variability model, spatial smoothing is inversely
proportional to the cloud speed: slower cloud speeds
mean more spatial smoothing. The locations where the
reduction from VSGHL = to VS was largest were
the locations with the slowest cloud speeds during sample
weeks. The increase in V Sgrpaist at Boise is due to its
very fast cloud speeds (leading to little spatial
smoothing), which did not provide enough smoothing to
outweigh the increased variability in irradiance on a
single axis tracking plane versus GHI.

Even though the two Albuquerque locations had
nearly identical VSgngist values, they differ significantly
in their VS§g, values due to different cloud speeds.
The week sample chosen for the PSEL location was from
July when cloud speeds are typically slow in New Mexico:
the average cloud speeds for the PSEL sample week was
3.9 m/s. Conversely, the Mesa sample was from April
when cloud speeds are high in New Mexico (see Fig. 7 in
[20] for seasonal comparisons of cloud speeds), and the
average cloud speed for the Mesa sample was 14.6 m/s.
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were used as input for distribution studies.

5.2. Feeder Setup

We used a 12kV agricultural feeder in California as
our test feeder. The feeder layout is shown in Fig. 10.
This feeder was chosen partly because of the location of
its voltage regulator (approximately halfway down the
feeder), which allowed for simulation of a 3SMW PV plant
just beyond the voltage regulator.

For all simulations, the load profile from the week

175
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Figure 9: Bar chart of VST 2" (30s) derived from the ramp rate
distributions of the weekly power samples shown in Fig. 8.

with maximum load recorded at this feeder was used.
Load was recorded at 30-minute intervals and linearly
interpolated to 1-second for this analysis. During this
maximum load week, the maximum feeder load was
8.5MW, and the minimum feeder load was 4.8MW.
Through the voltage regulator, the maximum load was
4.7MW, and minimum load was 2.7MW. The variability
in load was small: the largest ramp through the voltage
regulator was 0.25MW in 30 minutes, and the
VSlead (30s) = 0.9 for the load through the voltage
regulator, which is much smaller than the VSERL",
values shown in Fig. 9. Based on this load profile, we
chose to simulate a 3MW PV plant since this was
approximately the maximum amount of PV that would
not lead to reverse flow through the regulator. The PV
power output profile varied for each simulation, as shown
in Fig. 8.

Using the distribution simulation program OpenDSS
coupled with the analysis program MatLab [24],
quasi-static time-series (QSTS) power flow analyses at
1-second resolution were computed. PV variability
samples were linearly interpolated to 1-second for
locations that did not have 1-second variability samples
(Tabel 1). This is expected to have a minimal effect on
results since the temporal resolution at each location was
always shorter than the voltage regulator time constant.
The analysis was run 11 different times: once with no PV
as a base case, and once for each of the 10 different PV
power profiles. The voltage regulator was simulated using
the default OpenDSS control [25] and had a time delay of
45s in all simulations, consistent with the actual feeder
setup.

5.3. Voltage Regulator Operations

The distribution grid impact analysis focused on the
number of times the line voltage regulator changed taps

Substation
PV PCC
LTCAVREG
& Switching Capacitor

Figure 10: Layout of the study distribution feeder showing the
location of the substation, the voltage regulator considered, and the
3MW of PV.
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Figure 11: Power through voltage regulator (top), voltage regulator tap position (middle), and cumulative number of tap changes (bottom)
for the feeder base case with no PV (black, both plots) and for the 3MW Oahu, HI test case (orange, left plots), and for the 3MW Sacramento,

CA test case (red, right plots).

in order to keep the feeder voltage in normal range.
Increased tap changes lead to increased operation and
maintenance costs and reduce the lifetime of the
regulator. Fig. 11 shows the results of the QSTS analysis
for the base case and for the Oahu and Sacramento PV
power profiles. The power through the voltage regulator
in the no PV base case (black line in top plots in Fig. 11
is the load profile. The week starts on a Sunday (hours
0-24) and ends on a Saturday (hours 144-168), and both
of these weekend days had lower load than during the
weekdays. As a result, the voltage regulator did not
change its position very often when no PV was
connected, and so there were relatively few tap changes.
Monday (hours 24-48) was the day with the highest load,
and also had 20 tap change operations in the no PV case,
the most of any day. It is important to remember that
voltage regulators were traditionally installed to regulate
load, so there can be a significant amount of tap change
operations even without PV. Over the whole week, there
were 78 tap change operations in the no PV base case.

When using the Oahu PV power sample, the power
through the regulator fluctuated much more than in the
no PV case. On Monday (hours 24-48), the high PV
variability combined with the high load caused a total of
92 tap changes on that one day. Since nearly every day
had high variability, over the entire week there were 320
tap change operations, more than four times as many as
in the base case.

The Sacramento PV sample did not increase the tap

change operations nearly as much as the Oahu sample.
On the Monday (hours 24-48), the Sacramento PV sample
produced only 16 tap operations, which is a decrease from
the no PV case. This occurred because the Sacramento
PV had significant production during the peak load time,
such that the tap changer did not have to ”chase” the
load as far, while also not having much variability and so
not introducing many new tap operations. On other days,
the Sacramento PV wvariability did cause additional tap
operations; over the whole week the Sacramento sample
led to 94 tap changes, a modest 21% increase over the no
PV case.

5.4. Tap Changes at each Location

Fig. 12 shows the total number of tap change
operations in the sample week for each of the PV power
profiles, including the base case with no PV. The Oahu
sample by far causes the most tap changes, as it lead to a
more than 300% increase in tap changes over the no PV
base case. The Lanai (228%) and Mayaguez (198%) PV
profiles also lead to large increases in tap operations over
the base case. This is consistent with the large VST p0",
and nggdlist values found at these locations. The
Sacramento (21%) and Livermore (38%) locations
resulted in only a small increase in tap change operations
over the base case. Again, this is consistent with the
small VSEY and VSGHL | values at these locations.

Other locations did not show as strong of a

relationship between VShz,", and the number of tap
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Figure 12: Total tap changes during the sample weeks when using
3MW PV variability profiles from each location. The black bar is
the feeder base case with no PV.

changes. The Las Vegas sample had more tap changes
than the Livermore sample, even though the Las Vegas
VS e was lower. This difference is due to the timing
of the solar fluctuations relative to the load: more of the
Las Vegas variability occurred at times of low load (e.g.,
on Sunday, hours 0-24), and so had more of an impact on
tap change operations.

5.5. Need for High-Frequency Solar Variability

To demonstrate the importance of high-frequency
solar wvariability in simulating the impact of PV on
distribution grids, we re-ran the simulations described in
the previous sections wusing lower frequency solar
variability data. For this comparison, we down sampled
the 1-second power timeseries to create 1l-minute,
5-minute, and 15-minute resolution power timeseries.
This was done using backward-looking block averages.
For example, the average of all values between (inclusive)
6:00:01 and 6:01:00 was recorded as the l-minute data
point at 6:01:00. Thus, this data is representative of
sensors that collect low-frequency data in this manner:
measure at high-frequency, average, then record the
low-frequency average. These block-averages were
linearly interpolated to 1-second in the same way that
the load data was interpolated to 1-second before being
fed into the distribution simulation.

Figure 13 shows the errors in the 1-minute, 5-minute,
and 15-minute data at matching the number of tap
change operations found with the sub-minute data. All
errors were negative, meaning that the low-frequency
data always under predicted the number of tap changes.
For example, for the Oahu sample, 320 tap changes were
found in the 1-second simulation, but only 264, 138, and
96 tap changes were found in the l-minute, 5-minute,
and 15-minute cases, respectively.

Errors were correlated with the variability at each
location. The smooth Sacramento sample had very small
errors even for the 15-minute resolution, presumably due
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Figure 13: Percent error in tap changes when using l-minute, 5-
minute, or 15-minute resolution PV power data versus using 1-second
resolution PV power data. For example, at Oahu when using 15-
minute data only 96 tap change operations occurred, which is a -70%
error compared to the 320 tap changes when using 1-second data.

to the lack of high-frequency solar variability in the
sample week. Oahu, by contrast, had -17.5% error just
by using 1-minute resolution data.

Except for the Oahu sample, 1-minute errors were
modest (< 10%) and likely within the margin of other
errors (e.g., errors in modeling the feeder layout, the PV
production, etc.), suggesting that 1-minute data may be
acceptable for rough simulations if no higher frequency
data is available. These modest 1-minute errors are likely
explained by the 45-second (i.e., similar to 1-minute)
time constant on the voltage regulator: a shorter voltage
regulator time constant would likely result in larger
errors. Errors for the 5-minute and 15-minute resolution
data were significant, showing the importance of using
high-frequency solar variability samples to attain
accurate simulations of the impact of PV on distribution
grids.

6. Conclusion

The distribution simulation results using different PV
variability profiles by location have strong implications
for distribution studies and PV integration. Significant
overestimation or underestimation of the impact of PV
can occur due to choosing an inappropriate solar
variability profile. For example, a distribution study that
used the Oahu irradiance profile to represent the
irradiance in Sacramento would overestimate the number
of tap changes by more than a factor of 3. Such a study
might erroneously assign a high cost to PV integration
due to increased voltage regulator operation and
maintenance costs, and decreased lifetime. Conversely, a
study of a distribution feeder in Oahu using PV data
from Sacramento would significantly underestimate the
impact on tap change operations and may assign too low
of a cost to PV integration. Using low-frequency solar
variability data can also cause significant



underestimation of tap change operations, such as the
-70% error when using 15-minute data at Oahu.

Overall, the number of tap changes were well
correlated with the PV power variability score V.SE0",
and even with the GHI variability score V.SGHL . This
shows that the variability score V Spgrqist can be a useful
metric for quantifying solar variability. Variability
samples with high V. Sgpra4ist values (such as Oahu, Lanai,
and Mayaguez) can be expected to have a large impact
on voltage fluctuations, while variability samples with
low V Sgrraist values will be expected to have less of an
impact. However, variables such as PV module POA or
tracking setup and geographic smoothing over the spatial
area of a PV plant mean that VSgngist may not be a
good predictor of VSER" . Additionally, distribution
grid variables such as feeder layout, tap changer settings,
and load profiles mean that V.S%72.", may not be a good
predictor of tap change operations. To understand the
specific impact of PV to a distribution grid, a detailed
study accounting for all of these variables is required.
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