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Data

 1.5 year of SCADA data collected 
from 67 mid-west MW-class 
turbines

 Met-mast south of farm {M}
 Flat terrain surrounded by 

clusters of threes, farm houses 
and other wind farms

 Data is reduced from 2 sec. 
resolution to 10 min. value

 Wind rose: NW and S
 Red, blue & black lines show <5D, 

5-6D and 6-7D spacing
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Correcting nacelle position 
and initial data cleaning

 Only operational data are used for the analysis
 Initial data is 61,000 10 min values per turbines, 

keeping only data from 4 m/s to 20 m/s, 46,000 
10 min values per turbine remain, which agrees 
with the annual wind speed distribution for the 
site 

 The nacelle position generally serves only little 
purpose for the turbine control, so often the 
sensor is un-calibrated and associated with drift 
and/or offset

 Steps for correction of nacelle position:
1. Define residual as deviation from average of met-

mast and two neighbor turbines
2. Identify and remove periods with discrete off-set 
3. Remove outliers larger than one std. dev.

 The remaining data is ~34,000 10 min values per 
turbine
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Cleaning power curves

 With the wind range and nacelle position 
corrected, turbine pitch as a function of 
nacelle wind is used to filter abnormal 
power mode operations

 Steps for correction of power curve:
1. Compute 1 m/s binned pitch curve
2. Remove outliers larger than one std. dev.

 The method removes:
• Most severe outliers
• De-rated power modes
• Most low wind outliers

 Final number of data available is 32,000 
10 min values per turbine or ~ 222 days of 
operation
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Paired power curve comparison

 Turbine #6 and #7 is 6D apart in NE corner of the 
wind farm

 Using western wind, mapping turbine #6 and #7 
against their own nacelle anemometer, the wake 
turbine #6 impose on #7 can not be detected

 Mapping both turbines to turbine the upstream 
nacelle anemometer of #6, turbine #7 
(obviously) show a wake deficit in region II of the 
power curve as expected

 This method can only be used when the 
upstream turbine is free, which for most complex 
layouts, never is the case
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Paired directional comparison

 For each wind direction the 
average normalized instant 
power and variability reveals 
wakes clearly by direction, 
magnitude and shape

 Neighboring features, for 
example turbine#1 in NE 
direction, is also revealed

 For a two turbine situation, the 
nominator is strongly influenced 
by the wake. If all the farm is 
used, this effect becomes 
negligible
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Directional analysis – full wind farm
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New observations

 Four effects have been identified:
• Wake deficit 
• Speedup channels from two 

upstream turbines
• Shear point speedup from one 

upstream turbine
• Shear point speedup from multiple 

upstream turbines or an upstream 
wind farm

 The three speedup effects are 
new, generally not considered in 
wind farm modeling
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Wake deficits

 Wakes can be identified in 
profiles of power deficit at 
expected bearings within a few 
degrees of accuracy

 Wake width, plotted in x/D 
using bearing and turbine 
distance

 Power variability is a strong and 
consistent indicator of wake

 The site contains almost no 
clean inflow situations due to 
landscape, upstream farms and 
upstream turbines, which skews 
profiles
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Wake deficit as function of distance

 Data comparing 854 turbine 
pairs in direct wake of each 
other

 Power wake deficit follows 
expected behavior, 
comparing to classic wake 
deficit theory:

 Variability drops rapidly as 
some wake models predicts 
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Speedup channels

 Profiles are plotted relative to a 
bearing of the mid-point 
between two upwind turbines

 An performance from 1.1 to 1.3 
over norm (=1) is found

 Centerline power variability is 
found to be lower than ambient 
level

 Both effects are generally not 
included in wake models
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Shear-point speedup

 Profiles are plotted aimed 
directly at the upwind turbine, 
where the clockwise upstream 
airflow is free of obstruction

 Between 15 an 20 degrees 
speedup with a power boost of 
1.1 and 1.22 over average is 
found

 Power variability in this range 
is found to be lower than 
ambient level

 Both effects are generally not 
included in wake models
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Speedup from multiple turbines

 Six turbines face rows of 
turbines at due north 

 Profiles are plotted at absolute 
bearing (0= North)

 Speedup power boost of 1.3 
and 1.5 over average is found

 Clockwise a 15 to 20 degrees, 
speedup is still found, and the 
power variability in this region 
is found to be significant lower 
than ambient level

 Complexity is larger at this 
angle because the effects are a 
combination of speedup and 
waking and landscape 
roughness

 The effects are generally not 
included in wake models
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Conclusion

 The novel directional analysis applied has proven effective in 
mapping wake deficit in a complex wind farm layout

 Three new wake effects have been discovered
• Speedup channels from two upstream turbines
• Shear point speedup from one upstream turbine
• Shear point speedup from multiple upstream turbines or an upstream 

farm

 The new speedup effects identified are generally not included 
in wake modeling

 High power associated with the speedup effects is counter-
intuitively associated with low power variability

 The discovered effects cold affect turbine reliability in a 
positive way
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