Instrumentation of a WEC device for controls testing

METS – April 28 2015
Resilient NonLinear Control (RNLC) program

- US DOE Sponsored Controls Program
 - Multi-year Program with four major phases
 - Theoretical Development: performance model and controls
 - Experimental Validation:
 - Multiple phases
 - Each major phase is tied to a validation program to be carried out at the Carderock MASK Basin

12.2-million-gallon tank in Carderock, West Bethesda, MD
Naval Surface Warfare Center
Resilient NonLinear Control (RNLC) program

- **Goal**
 - What is the potential of control systems in WECs?
 - Validate the extent to which control strategies, given real world limitations, can increase the energy production of resonant WEC devices.
Resilient NonLinear Control (RNLC) program

Methodology (Problem Inversion)

- Release limitations forced on implementing the control strategies by:
 1. Using the “controlled environment” of the wave tank
 2. Selectively activating configurations of the physical model

- Selectively probe the sensitivity of the control strategies by introducing the limitations in a structured manner.

- Outline the “minimum requirements” for each control strategy to be successful and determine the level of performance given the minimum requirements.

- Nonlinear control
Sensors selected for specific objectives of testing

- **MODELING**
 - System identification
 - Validate linear model
 - Small motion/wave amplitude
 - Models nonlinear effects
 - Hydrostatic
 - Drag
 - Submergence
 - Slamming
 - ...

- **CONTROL**
 - Real-time
 - Ideal conditions: all available measurements
 - Realistic conditions: reduced set of measurements available
Device overview

- 1/17th scale
- Motion: 5 DoF
 - heave, surge sway, roll pitch
- Absorption: 1 DoF
 - Heave
 - Linear generator
Translation measurements

- X, Y direction
 - String potentiometers
- Z direction
 - Encoder in linear generator
- Optical tracking
 - Natural point
Rotations: sensors layout

- Roll + Pitch
- String potentiometers
 - Linear measurements
Rotations: from lengths to angles

- Two reference frames
 1. Fixed to vertical tube
 2. Fixed to floating body

\[\vec{PC} = \vec{OC} - R^3_b(\theta, \phi) \cdot \vec{P}^b \]
Force measurements

- Heave
 - Load cell between linear motor slider and vertical tube

- Surge + Sway
 - Restoring (spring) on PMT
Pressure measurements

- Two sets of pressure transducers
 - Low accuracy
 - (modeling)
 - High accuracy
 - (modeling + control)
 - Accuracy
 - Wave elevation ~5mm
Slamming

- Slam panels
 - Simulate/emulate compliance of structure (novel design)

- Pressure sensors
 - (validation)
Housing for pressure sensors and slam panels

- Modular design
 - “Tube” enclosure
 - Cheaper PT (sealed tube)
Wave probes: provided by the basin

- #2 arrays of wire probes (Real Time control)
 - Directional measurements
- #1 Acoustic system (Modeling)
 - Distributed around basin
Safety probes and switches

- End stops/switches
- Accelerometers
- Flooding
 - Humidity
 - Current-loop
- Temperature
Acquisition system: Overview

- **Requirements**
 - Simultaneous sampling
 - Reduce latency
 - High processing power
 - For real time control
 - Modularity
 - WEC sensors
 - Wave basin sensors

- **National Instrument Compact RIO 9082**
 - Simultaneous sampling
 - FPGA
 - Processing power
 - Intel Dual core 1.33Ghz
 - NI Real Time OS
 - Modularity
 - MXI
 - EtherCAT
 - Ethernet
 - compact RIO interface
Acquisition system: Physical Layout

- Cable length
 - Several meters between buoy and DAQ
- Signal transmission interfaces
 - Current loop
 - SSI
 - Voltage
Acquisition system: data transmission and sampling

- **Data transmission**
 - Current loop
 - Pressure
 - Forces
 - SSI
 - Horizontal translations
 - Wave probes
 - Ethernet

- **Sampling rate**
 - 100Hz
 - Pressure
 - Force
 - Position
 - 10kHz
 - Slam panels
 - Accelerometers
Thank you.

This research was made possible by support from the Department of Energy’s Energy Efficiency and Renewable Energy Office’s Wind and Water Power Program. The research was in support of the Resilient Nonlinear Controls (RNLC) Program.

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

David Patterson dcpatte@sandia.gov
Diana Bull diana.bull@sandia.gov
Giorgio Bacelli gabcell@sandia.gov
Ryan Coe rcoe@sandia.gov

Sandia National Laboratories.