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Abstract 

 

To analyze and coordinate the operation of distribution systems with rapidly increasing amounts 

of PV, more accurate distribution system models are required, especially for the distribution 

system secondary (low-voltage) circuits down to the point of common coupling for distributed 

PV. There is a growing need for automated procedures to calibrate the distribution system 

secondary circuit models that are typically either not modeled at all or are modeled with a lower 

level of detail than the better modeled medium-voltage systems. This report presents an accurate, 

flexible, and computationally efficient method to use measurement data to estimate secondary 

circuit series impedance parameters in existing utility feeder models. The parameter estimation 

method assumes well-modeled primary circuit models, known secondary circuit topologies, and 

AMI active power, and reactive power measurements at all the loads in the secondary circuit. 

The method also requires AMI voltage measurement at most of the loads in the secondary circuit 

but can handle loads that do not have voltage measurements. No existing secondary circuit 

model information is needed, except for topology. The method is based on the well-known 

linearized voltage drop approximation and linear regression. The performance of the method is 

demonstrated on a three-phase test circuit with ten different secondary circuit topologies and on 

the Georgia Tech campus distribution system with AMI data. The developed method can be 

utilized to improve existing utility feeder models for more accurate analysis and operation with 

ubiquitous distributed PV interconnected on the low-voltage circuits. 
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1. INTRODUCTION 
 

1.1. Enhanced Distribution System Models for High PV Penetrations 

Driven by falling costs and government incentive programs, solar photovoltaics (PV) has 

experienced exponential growth rates, as shown by the International Energy Agency (IEA) 

statistics on the top of Figure 1. Assuming strong PV growth rates continue, IEA high renewable 

(hi-Ren) scenario expects PV to make up to 16% of the global electricity supply by 2050 [1]. 

 

 
 

Figure 1. Rapid increase of distributed PV: global cumulative growth of PV capacity [1]  

 

In February 2014, the total U.S. solar electric capacity was 12.1 GW. In 2014 , the U.S. PV 

capacity grew by 6.2 GW, growth 30% higher than in 2013 and over 12 times higher than five 

years earlier [2]. With the expected annual growth rate of 6.8% between 2013 and 2040, PV is 

expected to expand faster than any other source of renewable energy [3, p. 81]. The experienced 

past growth and expected future growth are shown in Figure 2. 

 

 
Figure 2. Past and future PV growth in the U.S.[4] 
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High PV penetration levels are already seen in some geographic areas with high solar resources 

and supportive politics. In Hawaii, the national leader of customer PV penetration, there are 

already circuits where the installed PV capacity exceeds 75% of the daytime peak load and 250% 

the daytime minimum load, as shown in Figure 3. California leads the nation in both number of 

PV installations with over 230,000 and with total installed PV capacity at almost 10 GW [5], [6]. 

 

 
Figure 3. O’ahu island Hawaii PV penetration of circuit daytime peak load (left) and minimum load 

(right) [4]  

 

An increasing share of PV will be located in distribution systems where it raises concerns of 

maintaining feeder operation within component loading and voltage standard limits [7], [8]. In 

order to maintain economic, high-quality, reliable, and safe distribution system operation under 

pervasive PV, faster and more accurate monitoring, coordination and control is imperative [9]. 

Much of distribution system operation is based on the assumption that the system analysis is 

correct, which means that the system models and the input data to those models must be very 

accurate. Currently, neither is. Instead, the models are often outdated and inaccurate, and 

measurement data is typically not properly integrated to be fully leveraged. However, emerging 

data and new sensors have the potential to provide enough information to support the new 

operational needs. 

 

Simultaneously, efficiency, quality, reliability, and safety requirements drive smart distribution 

automation schemes, including advanced Volt/VAr optimization, conservation voltage reduction 

(CVR), demand response (DR), and fault location, isolation and service restoration (FLISR). 

Smart distribution automation schemes require more accurate and reliable situational awareness 

[9]–[11], which is increasingly being provided by modern distribution system measurement 

sources such as smart meters and PV micro inverters [12]. Accurate and robust use of all 

available measurement information, as well as accurate distribution system models, will be 

essential for future distribution system state estimation (DSSE). DSSE is envisioned to become 

the cornerstone of the monitoring and coordination of future smart distribution system with 

ubiquitous PV and advanced distribution automation functions [13], [14]. 

 

Much of the distribution system analysis and operation is based on the assumption that the 

models used to run steady-state simulation are accurate. Circuit models, including the parameter 

values, may be incorrect as a result of data entry errors, inaccurate equipment data, network 

changes (e.g. phase balancing), incorrect tap information, etc. [15]. The most commonly 

encountered errors in the distribution system Geographical Information System (GIS) and power 

flow models include incorrect component parameters, customers modelled connected to the 
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wrong distribution transformer, and distribution transformers modelled on the wrong phases of 

feeders [16]. Improving the accuracy of feeder parameters becomes critical as the numbers of 

DERs increases. DERs make it more challenging to operate the feeder within ANSI limits while 

optimally managing advanced applications such as Volt/VAr optimization, protections, and CVR 

schemes. 

 

It is particularly important to improve the models of the distribution system secondary (low 

voltage) networks where a large share of the new controllable devices, such as electric vehicles, 

PV with smart inverters, and demand response, are located. The secondary networks are typically 

either not modeled at all or modeled with a low level of detail although a significant portion of 

per-unit voltage drop/raise occurs over the high impedance service transformers and low voltage 

lines with high losses. 

 

The typical approaches to correct circuit errors, such as performing physical inspections or 

utilizing added measurements, require considerable man hours and additional resources and thus, 

are not cost-effective [16]. Physical inspections can also be hard to perform in densely populated 

urban areas with wiring underground and in buildings. There is a growing need for automated 

procedures to improve the accuracy of distribution system including secondary circuit models 

with minimal physical inspections. 

1.2. Parameter Estimation 

The objective of parameter estimation (PE) is to find the most likely component parameters that 

are typically known with varying levels of accuracy [15], [17], [18]. The parameter estimation 

problem is closely related to topology estimation, which has the goal of identifying the most 

likely system topology. Because the number of possible topologies and parameter value 

combinations can be very large, parameter and topology estimation should not be seen as an 

optional process to obtain a good initial system modeling [18], but rather as a necessary step to 

calibrate and verify the accuracy of existing utility models. It is not advisable to attempt to 

estimate parameters using a tolerance accuracy smaller than the average measurement error. The 

estimated parameter errors are proportional to the average measurement error, and in the worst 

case, the presence of measurement noise can result in replacing rather accurate original 

parameter values by less accurate estimated values [17]. 

 

Line and transformer parameters can be assumed to be time invariant and can be estimated off-

line, whereas load tap changing transformer tap positions change over time and require online PE 

[17], [19]. The local measurement redundancy and robustness of offline parameter estimation is 

increased by utilizing historical databases of measurement data that can be selected free of gross 

and topological errors [17], [19]. Additionally, offline PE requires no modifications to the 

existing online algorithms [17]. 

1.2.1. Transmission System Parameter Estimation 

Before describing distribution system parameter estimation, let us briefly review methods for 

transmission system parameter estimation, which have been studied since the 1970s. These 

algorithms are typically integrated with the state estimation algorithm and are based either on 
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residual sensitivity analysis or augmented state vectors [15], [19]. In the former type, PE is 

performed after state estimation by utilizing linear sensitivities between the parameter errors and 

measurement residuals. In the latter, the typical state vector is augmented with additional 

variables that represent suspicious parameters. The augmented state vector methods apply either 

normal equations or Kalman filter theory. The augmented state vector methods have surpassed 

the residual methods, which however, are important for identifying suspicious parameters [17], 

[19]. 

 

Parameter and measurement gross errors are often harder to identify in state estimation than 

topology errors and thus, may go unnoticed for longer periods of time [15], [17], [19]. Topology 

errors cause several normalized residuals to violate a specified threshold in state estimation 

algorithm. These residuals correspond to measurements close to the topology error. Similar 

phenomena is observed with gross measurement errors because of the so-called “smearing 

effect” that can make it challenging to distinguish between topology errors and gross 

measurement errors [20]. Since erroneous network parameters have a relatively local impact on 

the state estimation results, parameter estimation can be performed in a local manner. Accurate 

measurements typically help in identifying parameter errors [17]. 

1.2.2. Distribution System Parameter Estimation 

Compared to the well-established transmission system parameter estimation, distribution system 

parameter estimation (DSPE) is subject to a number of different challenges. First, multi-phase 

asymmetric, radial distribution systems with unbalanced loads, low X/R-ratios, and various 

connections of transformers and loads make distribution system models complicated and 

different from transmission system models [21]. Second, most utilities do not have existing 

distribution system state estimators and thus, most conventional transmission system parameter 

estimation approaches that are integrated in the state estimator are not directly applicable. 

Finally, the low number and quality of measurements in distribution systems results in a low 

measurement redundancy or even the lack of observability in certain circuit sections. For these 

reasons, DSPE has been studied less than transmission system parameter estimation but is 

becoming more possible to implement using advanced metering infrastructure (AMI) and other 

modern distribution system measurement sources [22]–[28]. However, compared to transmission 

system parameter estimation, DSPE algorithm needs to operate without existing state estimator 

and manage complicated distribution system models and the lower redundancy, reliability, 

accuracy, and granularity of the modern distribution system measurements. 

 

There has been some previous work on DSPE. A linear optimization-based method for topology 

error detection, parameter estimation, and theft identification has been proposed in [29]. The 

authors did not estimate the reactances or leveraged the reactive power measurements. Topology 

error detection regarding smart meter placement in GIS system is introduced in [16]. In [30], the 

author presents a method for meter phase identification and meter-to-transformer mapping by 

applying a voltage drop equation and linear regression with AMI energy and voltage 

measurements. In [31], the authors assume a known radial network topology and derive a 

quadratic equation between the smart meter measurements and upstream bus voltage. Then, 

utilizing this equation, the authors estimated branch parameters using a gradient-based approach 

with the objective of minimizing the variance of voltage estimates from various smart meters. 



17 

The approach makes no simplifications to the AC power flow equations but results in an 

optimization problem with quadratic equality constraints that is computationally much more 

intensive to solve than linearized approaches.  

 

This report builds on the approach presented in [30] but presents more detailed analysis and a 

number of refinements to increase the performance of the method proposed in [30]. This report 

focuses on impedance parameter estimation of radial secondary circuits with known topologies. 

In future work, the method will be expanded for estimating impedance parameters of radial 

circuits with unknown topologies. 

1.3. The Structure of This Report 

Following Chapter 1, which provides the background and motivation for distribution system 

secondary circuit parameter estimation, Chapter 2 presents a 2-bus test case and a 3-phase 66-

node test circuit that are used throughout this report to test and compare algorithms and methods. 

Chapter 3 first presents two heuristic methods to estimate series impedance parameters and, 

motivated by the disadvantages of these methods, proposes an alternative linear regression 

parameter estimation method. The chapter also introduces three alternative estimators and 

presents the method that was chosen for this report. Chapter 4 expands the single branch 

parameter estimation to estimation of all the parameters in a radial secondary circuit. The chapter 

begins by discussing the problem formulation, assumptions, and principle after which two 

alternative approaches are presented and compared to estimate the parameters of a secondary 

circuit subsection with N parallel branches. Chapter 5 provides a detailed comparison of 

alternative linear regression models and their performance for both tests circuits without and 

with measurement error. The chapter also presents the method that was chosen for this report. 

Chapter 6 discusses the implementation of the distribution system secondary circuit algorithm in 

a practical utility setting. Chapter 7 includes the parameter estimation results for the 3-phase 66-

node test circuit with the chosen parameter estimation method with practical levels of 

measurement error. Chapter 8 extends the proposed parameter estimation method to handle cases 

where some meters do not report voltage measurements. Finally, Chapter 9 concludes the report. 
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2. TEST CIRCUITS FOR PARAMETER ESTIMATION 
 

This chapter introduces the circuits that are used throughout the rest of the paper to illustrate 

parameter estimation methods. A two-bus test circuit and a larger 66-node 3-phase test circuit 

were generated to develop, test, and compare different parameter estimation methods. While the 

ultimate parameter estimation objective is to improve the voltage (drop) simulation accuracy in a 

given utility feeder model, in these test circuits it was possible to measure the parameter 

estimation accuracy directly as the relative percentage error of the estimated parameters with 

respect to the known parameters with: (𝑃𝑎𝑟𝑒𝑠𝑡 − 𝑃𝑎𝑟𝑜𝑟𝑖𝑔) 𝑃𝑎𝑟𝑜𝑟𝑖𝑔⁄ × 100%. Finally, the real 

distribution system on Georgia Tech campus is introduced and is used later to demonstrate 

parameter estimation for an actual system with unknown parameters. 

2.1.1. Two-bus Test Circuit 

A simple two-bus test circuit was generated to demonstrate the behavior of the different 

parameter estimation algorithms at a conceptual level. The circuit consists of a single load that is 

connected to the fixed voltage sources at the upstream bus over a service transformer and a 

service line. The circuit is shown in Figure 4. 

 

 
Figure 4. Simple two-bus test circuit 

 

2.1.2. 66-Node Three Phase Test Circuit 

A three-phase balanced test circuit model was implemented with a single backbone feeder and 

ten secondary circuits with different topologies. In each of the topologies, there is a single 

MV/LV transformer with arbitrarily (but realistically) selected parameters. Each load is 

connected to a point in the secondary system over a service line as listed in Table 1. 

 
Table 1. Secondary circuits of the 66-node three-phase test circuit 

Secondary Circuit Number 

(Order from the Substation) 
Load Connections 

1 5 loads connected to the transformer 

2 1 large load connected to a pedestal 

3 5 loads connected in series on a service line (without separate service drops) 

4 5 loads connected to a pedestal 

5 2 loads connected to the transformer and 2 loads connected to a pedestal 

6 2 separate pedestals each with two loads 

7 2 pedestals in series each with 2 loads 

8 2 pedestals in series: first with one load, second with 3 loads 

9 1 pedestal with two loads 

10 1 load connected to the transformer, 1 pedestal with 1 load 

Voltage
Source

(3φ 240V L-L)

Load
(3φ, fixed P2,Q2)

Transformer & 
Service Line 

Z=R+jX

V1 V2
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An example of the circuit line plot and voltage profile with given load active and reactive power 

values are given in Figure 5 and Figure 6, respectively. 

 

 
Figure 5. Topology of the 66-node three-phase test circuit (secondary circuit numbers in red) 

 

 
Figure 6. Voltage profile of the 66-node three-phase test circuit 

 

In order to create the profile for each load in this test circuit, a year of 36 distinct residential 

active power hourly measurement profiles were acquired from Pecan Street Inc. [32]. The total 

building consumptions (table Use, [32]) in year 2014 are utilized. First, each circuit load was 

assigned a peak kW and kVAr depending on the number of loads in the given secondary circuit 

and the service transformer kVA rating. Then, each circuit load was randomly assigned one of 

the Pecan Street load profiles. The load profiles were scaled to selected average load kW. All 

values exceeding a selected peak load kW were set randomly to 60-100% of the load kW and all 

negative or zero load values were set to random values 5-15% of load kW. Then, reactive power 

consumption profiles were created based on the active power profiles utilizing a different 

Voltage (pu) with line thickness by line current
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random power factor in the range of 0.9-1.0 for each measurement. The active power, reactive 

power, and power factor profiles over the first week of data are visualized in Figure 7. 

 
Figure 7. First week of the active power, reactive power and power factor profiles 

 

The load voltage “measurements” were acquired by solving the time series power flow 

simulation with the loads varying according to their real and reactive power profiles. The 

resulting voltage “measurements” for the first week in 2014 are shown in Figure 8. 

 
Figure 8. First week of the voltages 

 

2.1.3. Georgia Tech Distribution System Feeder 

The distribution system parameter estimation is also demonstrated on one of the feeders of the 
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extensive AMI including a 15-min historical measurement database with  several years of 

measurements [33], [34]. The 19.8 kV feeder shown in Figure 9 is an underground system that is 

approximately slightly over 3.5 km long and has a peak load of 0.90 MW. In the base case, 

standard manufacturer parameters were used for the service transformers, and the unknown 

secondary cable lengths were assumed to be 100 feet long. The feeder circuit line plot and 

voltage profile with the base case parameters are shown in Figure 9. 

 

 
Figure 9. Georgia Tech feeder circuit line plot (left) and voltage profile (right) 
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3. BRANCH SERIES IMPEDANCE PARAMETER ESTIMATION 
 

This chapter begins by presenting two simple, flexible heuristic approaches to estimate line and 

transformer series impedance parameters. Motivated by the disadvantages of the heuristic 

approaches and the challenges of distribution parameter estimation, the rest of the chapter 

discusses an approach for estimating line and transformer series impedances based on linearized 

voltage drop approximation and linear regression. Alternative linear regression estimators are 

also discussed. 

3.1. Heuristic Parameter Estimation Approaches 

Heuristic parameter estimation approaches do not leverage any parameter estimation problem 

structure to search for the best parameter estimates. Such non-model based approaches are very 

simple and flexible to implement, but they tend to be computationally highly demanding since 

they perform some sort of exhaustive search over the solution space. Two simple heuristic 

parameter estimation methods, brute force and particle swarm optimization, were implemented 

and tested on the two-bus test circuit shown in Figure 4. 

3.1.1. Brute Force 

The brute force algorithm goes through all possible user-set (realistic) parameter (R and X) 

combinations, and for each parameter combination, it performs a time series power flow analysis 

to simulate the circuit voltages for that set of parameters. The objective is to find the parameter 

combination with the smallest mean absolute error of the simulated voltages compared with the 

measured voltages. The brute force approach requires running a large number of time series 

power flows, which is computationally very expensive. Moreover, due to the curse of 

dimensionality, the computational requirements grow exponentially with the number of 

parameters to be estimated. For example, if a sparse grid of ten R and X values is evaluated, this 

approach would require evaluating one million (10
6
) time series power flows for a simple circuit 

with three branches and six parameters. If one of the time series power flows was executed every 

second, it would take over 11 days to evaluate all the combinations. Clearly, the brute force 

approach is only useful for validating more sophisticated methods in example networks with one 

to four parameters. 

 

The brute force algorithm was tested by estimating the three-phase test circuit secondary circuit 

number 2 parameters using one week of 1-hour load data (168 data points). A linearly spaced 

grid of 100 × 100 R and X combinations were evaluated with 𝑅 ∈ [0.1,5] and 𝑋 ∈ [1,10]. The 

algorithm executed the resulting 10,000 time series power flows over the 168 time instances in 

290 seconds (4 min, 50s) and returned the parameters 𝑅𝐸𝑠𝑡 = 0.9919%, 𝑋𝐸𝑠𝑡 = 5.727%. 

Compared to the original parameters 𝑅𝑂𝑟𝑖𝑔 = 1% and 𝑋𝑂𝑟𝑖𝑔 = 5.7%, the parameter estimation 

errors were for 𝑅𝑒𝑟𝑟 = −0.81% and 𝑋𝑒𝑟𝑟 = 0.47%. The mean absolute load voltage simulation 

error with the optimal parameters over the time period was 𝑀𝐴𝐸𝑂𝑝𝑡 = 0.000598 V. If no model 

or measurement error was present, an arbitrary parameter estimation accuracy could be reached 

by further refining the grid. The mean absolute voltage simulation error dependency on the 

parameters is visualized in Figure 10. As expected, the voltage simulation error seems to be a 
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relatively smooth convex function (with an optimal value) with respect to the transformer 

parameters. However, the objective function is quite flat around the optimum solution, which 

makes it harder to find the optimal solution. 

 

 
Figure 10. Brute force estimated secondary circuit no. 2 transformer parameters: mean absolute 

error dependency on R and X 

 

Figure 11 shows the small difference between the measured voltages and the voltages simulated 

with the estimated parameters. 

 

 
Figure 11. Load voltage simulation accuracy with brute force estimated parameters 

 

3.1.2. Particle Swarm Optimization 

Compared to the brute force approach, particle swarm optimization (PSO) is a more intelligent 

meta-heuristic approach that can be used to find good solutions for nonlinear (mixed-integer) 

optimization problems [35]–[38]. PSO searches for good solutions by iteratively trying to 

improve a candidate (i.e. particle) solution with respect to a given measure of quality that is 

called the particle fitness. Typically, a particle movement is calculated based on the particle best 

solution, the best solution of all particles, and the current particle movement velocity. PSO is 

very simple to implement since it does not require knowing any problem-specific structure apart 

from a way of evaluating the fitness of a given particle solution. On the other hand, since PSO 

does not leverage problem-specific structure, it is also unable to provide guarantees of 

converging, even to a locally optimal solution. Moreover, contrary to convex optimization 

methods, PSO does not tell anything about the quality of the returned best solution compared to 

the theoretically best solution (i.e., no lower/upper bounds are returned). 
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A PSO algorithm was implemented to search for the series impedance values for a selected 

transformer to minimize the mean absolute difference between the measured voltages and the 

simulated voltages of a selected load. The voltages are simulated with OpenDSS. The parameters 

estimated in OpenDSS are the winding resistances 𝑅1 and 𝑅2, and the high-to-low inter-winding 

reactance 𝑋ℎ𝑙. The algorithm was tested by estimating the transformer parameters of the 3-phase 

test circuit secondary circuit number 2. In 60 seconds and 100 PSO iterations, the globally best 

particle solution was: 𝑅1 = 0.1%, 𝑅2 = 0.901917% (𝑅1 + 𝑅2 = 1.01917%), and 𝑋ℎ𝑙 =
5.68623%. Compared to the original parameters 𝑅𝑂𝑟𝑖𝑔 = 1% and 𝑋𝑂𝑟𝑖𝑔 = 5.7%, the parameter 

estimation errors were for 𝑅𝑒𝑟𝑟 = 0.0192% and 𝑋𝑒𝑟𝑟 = −0.0024%. PSO estimated the total 

transformer winding resistance 𝑅1 + 𝑅2 with a good accuracy but was unable to divide the 

resistance properly to the winding resistances 𝑅1 and 𝑅2. This applies in general that it is 

impossible to distinguish parameters of series branches from each other since series branches 

have the same impact on the voltage drop. Therefore, all series parameters must be estimated 

jointly and manually divided to the respective components by applying some engineering 

judgment. 

 

Figure 12 illustrates the quick convergence of the PSO algorithm close to the final estimated 

parameters. Typically, PSO is executed repeatedly several times with different initial particle 

locations to achieve better exploration of the solution space [35]. 

 
Figure 12. Particle swarm optimization progress over the iterations 

 

Figure 13 shows the small difference between the measured voltages and the voltages simulated 

with the estimated parameters. 

 

 
Figure 13. Load voltage simulation accuracy with PSO estimated parameters 
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3.2. Linearized Voltage Drop Parameter Estimation Approach 

Motivated by the disadvantages of non-model based parameter estimation approaches underlined 

above, this section presents a model-based method to estimate all the distribution system 

secondary circuit positive sequence series impedance parameters. As introduced in section 1.2, 

the absence of distribution system state estimator (DSSE), as well as the poor time 

synchronization, low accuracy, low granularity, and low measurement redundancy of distribution 

system measurements, makes it challenging to directly apply the conventional transmission 

system parameter estimation approaches. To overcome these limitations and challenges, a 

different parameter estimation approach is presented. 

 

The proposed parameter estimation approach leverages the well-known (see e.g. [39]–[41]) 

linear approximation of voltage drop magnitude over a series impedance  

 𝑉𝑑𝑟𝑜𝑝 = |𝑉1| − |𝑉2| ≈ (𝑅𝑃 + 𝑋𝑄) 𝑉2⁄ = 𝑅𝐼𝑅 + 𝑋𝐼𝑋 (1) 

where 𝑅 and 𝑋 are the (positive sequence) series resistance and reactance between bus 1 and bus 

2 as shown in Figure 14. The current resistive and reactive components are given with 𝐼𝑅 = 𝑃/𝑉2 

and 𝐼𝑋 = 𝑄/𝑉2. In case actual values are used, all the values must be referred to the same voltage 

level. In 3-phase systems, line-line voltages and 3-phase powers are used. 

 

 
Figure 14. Linearized voltage drop over a series impedance 

 

The goal of the parameter estimation problem is to find the parameters 𝑅 and 𝑋 (shown in red in 

Figure 14) that provide the best fit of the available measurement samples of 𝑉1, 𝑉2, 𝑃, and 𝑄 

(shown in blue in Figure 14) to one of the linear models 

 𝑽′ = (𝑽1 − 𝑽2)𝑽2 = 𝑅𝑷 + 𝑋𝑸 + 𝝐 (2) 

or 

 Δ𝑽 = 𝑽1 − 𝑽2 = 𝑅𝑰𝑅 + 𝑋𝑰𝑋 + 𝝐. (3) 

 

where the bold letters indicate vectors of 𝐾 measurement samples, i.e., 

𝑽, 𝑽𝟏, 𝑽𝟐, 𝑷, 𝑸, Δ𝑽, 𝑰𝑹, 𝑰𝑿 ∈ ℝ𝐾, and 𝝐 ∈ ℝ𝐾 represents the joint measurement and model error. 

In this report, (3) will be preferred over (2) since (3) does not involve multiplying by 𝑽2, which 

itself is an estimate when estimating 𝑅 and 𝑋 of the upstream components in the hierarchical 

radial circuit parameter estimation discussed in sub section 4. It is desirable to avoid dividing by 

the estimated values of 𝑉2 since this would cause any errors to propagate in a multiplicative 

manner as opposed to additive. 
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By denoting 𝒚 = Δ𝑽 = 𝑽1 − 𝑽2, 𝓧 = [𝑰𝑅 𝑰𝑋], and 𝜷 = [𝑅 𝑋]𝑇, (3) becomes the linear 

equation 

 𝒚 = 𝓧𝜷 + 𝝐. (4) 

An estimate of the parameters 𝜷̂ can be found by utilizing statistical estimation techniques. The 

estimated parameter vector 𝜷̂ will strongly depend on the defined loss function. If 𝑳𝑝-norm loss 

is used, 𝜷̂ can be found by solving the optimization problem 

 𝜷̂ = min𝜷 ‖𝒚 − 𝓧𝜷‖𝑝. (5) 

Typically, either 𝑳2 or 𝑳1 are used yielding two different estimators each with different 

advantages and disadvantages. Next, three typical approaches (ordinary least squares, linearly 

constrained least squares, and least absolute value) are introduced for solving (5). 

3.2.1. Ordinary Least Squares Estimator 

Solving (5) using 𝑝=2 (i.e. 𝑳2-norm) yields the (convex) quadratic programming problem 

 𝜷̂ = min
𝜷

‖𝒚 − 𝓧𝜷‖2. (6) 

Since square preserves convexity, the solution to (6) can be equally obtained by solving 

 𝜷̂ = min𝜷 ‖𝒚 − 𝓧𝜷‖2
2 = min

𝜷
∑ (𝑦𝑡 − 𝔁𝑡𝜷)2𝑇

𝑡=1 = min
𝜷

𝜷𝑻𝓧𝑻𝓧𝜷. (7) 

Problem (7) (without any constraints) is a linear regression problem that, assuming 𝓧 has full 

column rank, has the closed-form solution dubbed as the ordinary least squares estimator (OLS) 

 𝜷̂ = [𝑅̂ 𝑋̂]𝑇 = (𝓧𝑇𝓧)−1𝓧𝑇𝒚. (8) 

The linear regression problem (7) can be solved with any open source or commercial linear 

regression package. Next to the parameter estimates, these packages typically provide the user 

with various quantities such as parameter confidence intervals. Under a handful of conditions, 

the OLS has very attractive properties. First, OLS is a consistent estimator, i.e., as the sample 

size grows, the estimated parameters approach the true parameters. OLS is also unbiased (i.e. 

𝔼[𝒙] = 𝒙) and has the minimum variance among all unbiased estimators (minimum variance 

unbiased estimator, MVUE) [42]. Under the further assumption of independent, normally 

distributed errors, OLS is equal to the maximum likelihood estimator [42]. One of the 

disadvantages of OLS is that the results tend to be sensitive to outliers, which is why an effective 

outlier detection and removal is essential. 

3.2.2. Linearly Constrained Least Squares Estimator 

If problem (7) is solved subject to linear constraints such as parameter bounds, it becomes a 

quadratic programming problem 

 
𝜷̂ = min

𝜷
 𝜷𝑻𝓧𝑻𝓧𝜷 

s.t. 𝑪𝜷 ≤ 𝒅. 

(9) 

A large variety of open-source and commercial solvers exist for solving the problem. 
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3.2.3. Least Absolute Value Estimator 

Motivated by the OLS sensitivity to outliers, sometimes (5) is solved using 𝑳1-norm yielding the 

least absolute value estimator (LAV). LAV is found by solving the linear programming problem 

(LP) 

 𝜷̂ = min𝜷
‖𝒚 − 𝓧𝜷‖1 = min

𝜷
∑ |𝑦𝑡 − 𝔁𝑡𝜷|𝑇

𝑡=1 . (10) 

While LAV is much less sensitive to outliers than OLS, (10) has no closed-form solution and 

instead it must be solved with an LP solver. 

3.3. Selected Branch Parameter Estimation Approach 

Motivated by the disadvantages of the heuristic parameter estimation approaches underlined 

above, this report will utilize the linearized voltage drop approach. Each of the three estimators 

has unique advantages and disadvantages. Even though OLS is sensitive to outliers, there are 

several ways of detecting and removing measurement outliers before including them as inputs to 

the regression solution. Since OLS has a closed form solution, it is computationally more 

attractive than the least absolute value estimator and thus, attractive for parameter estimation 

with large data sets. Contrary to the OLS estimator, the linearly constrained least squares 

estimator allows setting bounds on the parameters. However, it was observed in the Georgia 

Tech distribution feeder that the parameter bounds may not be particularly useful. Parameter 

solutions at the boundary mean that the optimal parameters would be beyond the boundary. This 

typically happens if there is something wrong with the regression problem formulation or the 

measurement data. Thus, manual inspection and correction will be required in any case.  For 

these reasons, the remainder of this report focuses on parameter estimation with the OLS 

estimator. 
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4. RADIAL SECONDARY CIRCUIT PARAMETER ESTIMATION 
 

This chapter generalizes the method to estimate series impedance parameters of an individual 

branch discussed in chapter 3 to estimation of the series impedance parameters of entire radial 

secondary circuit. The method, which builds upon the method shown in [30], is illustrated in 

Figure 15. The objective of the method is to find the most likely values of resistance (R) and 

reactance (X) parameters shown in red in the figure. The method assumes that historical voltage 

(V), active power (P), and reactive power (Q) measurements shown in blue in the figure are 

available at all the leaf nodes of the secondary circuit tree. To estimate the service transformer 

parameters, the method requires measured or simulated service transformer medium voltage 

values at the tree root node. 

 

 
Figure 15. Secondary circuit tree for parameter estimation 

 

The proposed method relies on the following assumptions: 

1. Known circuit topology 

2. Fully radial circuit topology (i.e. a tree) 

3. Each of the leaf nodes (buses) of the tree has a smart meter or PV micro inverter 

measuring the voltage and either the active and reactive power or the current and the 

power factor. 

4. Balanced three-phase or a single-phase circuit 

 

If the circuit topology is unknown, it can be estimated following the approach discussed in [30]. 

In this report the topologies are assumed to be known, and the unknown topology case is 

addressed in future work. The second and the third assumptions are valid in most secondary 

circuits [39]. The fourth assumption is often invalid since in practice many distribution system 

secondary circuits are split-phase, i.e., a single-phase where a center-tapped transformer connects 

to a triplex cable with both 120V and 240V service to the loads. Although it is possible to model 

the split-phase secondary circuits in detail [43], parameter estimation is limited by the available 

measurement data, which typically consists of the customer total power and/or current as well as 

voltage measurement across the 120V (or the 240V) connection. As long as the power, current 

and voltage measurements for both the 120V and 240V loads are not included in the MDMS, it 

may be desirable to model split-phase secondary circuits with single-phase transformers, lines, 

and loads. Using this modeling approach, typical measurement meter data can be readily utilized 

to estimate the secondary circuit transformer and line parameters utilizing the approach 

introduced below. The method applies for both three-phase and single-phase circuits. 
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4.1. Principle 

The proposed parameter estimation method operates hierarchically proceeding from the leaf 

nodes (customer buses) of the secondary circuit tree towards the tree root node (upstream bus). 

Figure 16 illustrates the estimated parameters in red and the available measurements in blue. At a 

given iteration, the algorithm estimates the parallel branch impedances 𝑅1, 𝑋1, … , 𝑅𝑁 , 𝑋𝑁 of a 

subsection of the secondary circuit shown in Figure 16. First, the algorithm searches for a new 

“Upstream Bus” whose immediate downstream bus voltages and downstream branch currents (in 

blue Figure 16) are known (measured or estimated at previous iterations) but whose downstream 

branch impedances (in red in Figure 16) have not been estimated yet. Once a suitable bus and the 

corresponding downstream branches have been identified, the algorithm first estimates the 

branch impedance parameters using the available downstream bus measurements and then, 

estimates the upstream bus voltages using the measurements and the estimated branch 

parameters. These steps are explained in detail in the following subsections. 

 

 
Figure 16. Radial circuit parameter estimation 

 

4.2. Estimating Series Impedance of N Parallel Branches 

There are several ways to estimate the parallel branch impedances 𝑅1, 𝑋1, … , 𝑅𝑁 , 𝑋𝑁. In this 

report, two approaches are compared. The first approach estimates the parameters from a single 

regression problem. The second approach estimates parameters for each branch pair and merges 

the estimated parameters. Next, the approaches are introduced and compared. 

 

4.2.1. Simultaneous Parallel Branch Estimation 

All the parameters of the parallel branches can be estimated simultaneously by formulating a 

single regression problem as follows. Using the linearized voltage drop approximation (1), each 

of the N branches provides an approximate estimate of the upstream bus voltage 𝑉0 

 

{

𝑉0 = 𝑉1 + 𝑅1𝐼𝑅1 + 𝑋1𝐼𝑋1 + 𝜖1

𝑉0 = 𝑉2 + 𝑅2𝐼𝑅2 + 𝑋2𝐼𝑋2 + 𝜖2

⋮
𝑉0 = 𝑉𝑁 + 𝑅𝑁𝐼𝑅𝑁 + 𝑋𝑁𝐼𝑋𝑁 + 𝜖𝑁

. (11) 
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By using 𝑀 synchronous measurement samples 𝑽𝑖, 𝑰𝑅𝑖, 𝑰𝑋𝑖 ∈ ℝ𝑀, 𝑖 ∈ {1, … , 𝑁}, the parameters 

can be estimated with one of the approaches introduced in section 3.2. with the linear regression 

problem 

 𝒚 = 𝓧𝜷 + 𝝐, (12) 

where ϵ ∈ ℝ𝑀 is the error vector, 𝜷 ∈ ℝ(𝑀+2𝑁) is the parameter vector given by 

 𝜷 = [𝑉0,1, … , 𝑉0,𝑀, 𝑅1, 𝑋1, … , 𝑅𝑁 , 𝑋𝑁]
𝑇

, (13) 

and the response vector 𝒚 ∈ ℝ𝑀𝑁 is given by 

 𝒚 = [𝑉1,1, … , 𝑉1,𝑀, … , 𝑉𝑁,1, … , 𝑉𝑁,𝑀]
𝑇

. (14) 

Finally, the design matrix 𝓧 ∈∈ ℝ(𝑀𝑁)×(𝑀+2𝑁) is given by 

 𝓧 = [
I [−𝑰𝑅,1 −𝑰𝑋,1] ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
I 𝟎 ⋯ [−𝑰𝑅,𝑁 −𝑰𝑋,𝑁]

], (15) 

where I ∈ ℝ𝑀×𝑀 are identity matrices, 𝑰𝑅,𝑖, 𝑰𝑋,𝑖 ∈ ℝ𝑀×1, 𝑖 ∈ {1, … , 𝑁} are the branch current 

measurements, and the zero submatrices have suitable sizes. This formulation has (𝑀 + 2𝑁) 

unknowns and 𝑀𝑁 equations. In practice, 𝑀 ≫ 𝑁 and thus, there are many more equations than 

unknowns. 

4.2.2. Pairwise Parallel Branch Estimation 

Alternatively to the simultaneous parameter estimation shown above, the parallel branch 

parameters can be estimated by formulating multiple smaller regression problems and merging 

the resulting parameter estimates. A pairwise branch parameter estimation was considered here 

by formulating a regression problem for each branch pair of the N branches. This results in 

multiple estimates of each parameter that can be merged in several ways. In this report, the 

parameter estimates were simply averaged since this approach was observed to perform better 

than alternative approaches such as selection of best parameters based on the regression problem 

R-squared values. In general, there is no single metric that describes the quality of a regression 

model. 

4.2.3. Comparison 

The two approaches for estimating parallel branch impedances were utilized to estimate the 3-

phase test circuit parameters without and with 1% P, 1% Q, and 0.2% V measurement error, 

shown in Figure 17 and Figure 18 respectively. There is no considerable trend between the two 

approaches between the two cases. Some parameters are estimated better with one of the 

approaches while others are estimated better with the other. 

 

The pair-wise approach requires solving multiple smaller regression problems for the N parallel 

branches instead of a single larger regression model. For the pair-wise approach, the number of 

required regression models is given by the number of combinations of two branches from the N 

branches, i.e., (
𝑁
2

) (or “N choose 2”). The resulting number of regression models are 1, 3, 6, 10, 
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15, etc. for 2, 3, 4, 5, 6, etc. parallel branches, respectively. Since secondary circuits seldom have 

several parallel branches, the number of required regression problems remains small. Thus, the 

pairwise approach can be computationally more attractive with small number of parallel 

branches since it does not require building the design matrix in (15) that can be very large with 

large sample sizes. On the other hand, at large parallel branch numbers, the single regression 

problem formulation discussed in section 4.2.1 can become computationally preferable. 

 

Since there is no clear difference in accuracy between the two methods and since the test circuits 

used in this report does not have large numbers of parallel branches, the remainder of this report 

utilizes the pairwise parallel branch estimation approach. 

 

 
Figure 17. Average relative error difference of R and X parameters estimated with 8759 samples 

without measurement error (pairwise method error – single regression model error) 

 

 
Figure 18. Average relative error differences of R and X parameters estimated with 8759 samples 
without measurement error 1% P, 1% Q, and 0.2% V measurement error (pairwise method error – 

single regression model error) 
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4.3. Estimating Upstream Voltages 

Once the parallel branch impedances 𝑅1, 𝑋1, … , 𝑅𝑁 , 𝑋𝑁 have been estimated with the method 

shown above, the upstream bus voltages 𝑽0 can be estimated as an average of the individual 

branch voltage estimates 

 𝑽0 =
1

𝑁
∑‖𝑽𝑖 + (𝑅𝑖 + 𝑗𝑋𝑖)(𝑰𝑅𝑖 + 𝑗𝑰𝑋𝑖)‖

𝑁

𝑖=1

 (16) 

where 𝑽𝑖 is bus 𝑖 measurement vector,  ‖∙‖ refers to taking the magnitude of the complex 

number. It should be noted that even though each upstream node voltage is calculated with the 

full voltage drop equation (16), the voltage parameters are estimated using the linearized voltage 

approximation. 

4.4. Hierarchical Estimation vs. Entire Circuit Estimation 

It is worth noting that the linear voltage drop approximation requires performing the parameter 

estimation in the hierarchical fashion shown above. It is possible to formulate a large linear 

regression problem for estimating all the branch impedances at once but unfortunately, the 

resulting design matrix 𝓧 is perfectly collinear and has no unique solution. The reason for this is 

that all upstream branch predictors are linear combinations of the downstream predictors. The 

regression problem can still be solved, but it is unclear how to set sufficient additional conditions 

to get a unique solution that would provide the branch parameter estimates. Alternatively, the 

predictor linear dependency could be avoided by utilizing a nonlinear relationship between the 

voltage drop and the downstream predictors (such as the AC power flow). However, the resulting 

problem would not be linear with respect to the parameters, and iterative nonlinear optimization 

algorithms would be needed. 

4.5. Data Selection for Parameter Estimation 

Since the parameter estimation algorithm is run off-line with historical data, it is possible to 

selectively pick a subset of the available measurement samples. Many bad data types can be 

detected with conventional approaches such as checking for unrealistically high or low values 

based on historical data [44]. Typical distribution system secondary circuits have 5-15 customers 

(meters) and thus, when any of the necessary meters has missing or bad data, all measurement 

time stamps should be ignored. In statistical literature this is referred to as row-wise deletion. 

 

The linear regression based branch parameter estimation presented above utilizes the voltage 

drop magnitude approximation (1) that is well-known to be quite accurate for typical P, Q, R, 

and X values [41]. The largest error occurs under heavy load (current) and leading power factor 

[41]. The relative linearization error with respect to P and Q for a line with an X/R=1 is shown in 

Figure 19. With typical P and Q combinations, the error is below 1-2%, but it can be 

significantly higher with either 1) large positive P and small negative Q or 2) large negative P 

and small positive Q. While Case 1 is very untypical in distribution secondary systems where 

most loads are inductive, Case 2 can occur in secondary systems when a large injection from 
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distributed generation at unity power factor leads to reverse active power flow while the 

inductive loads consume VArs. 

 

The relative linearization error with respect to R and X for a 50kVA load at power factors 

(PF) = {0.9,0.95,0.98,1.0} are shown in Figure 20. Typical distribution system secondary 

circuit X/R ratio is in the range of 1 to 2, resulting in a linearization error below 2%. However, 

for circuits with high X/R ratio, the accuracy can be considerably worse. 

 

Provided that sufficient data is available, the figures suggest that the following data be filtered 

before parameter estimation: 1) Measurement samples that have both high P demand and 

(PF) ≥ 0.95 and 2) Measurement samples that have both high P generation (reverse power flow) 

and Q consumption. Filtering data has the disadvantage of reducing the number of available 

measurement samples, which can reduce the parameter estimation accuracy. Therefore, the 

filtering should only be considered for samples that have a considerable negative impact on the 

estimation accuracy. Whether the sample filtering is advantageous or not may depend on the 

characteristics of the load data at hand. The next chapter presents and compares alternative linear 

regression models that can be used to partially compensate the error in the linearized voltage 

drop equation and to handle error in practical measurement data sets. 

 

 

 
Figure 19. Voltage drop linearization error [%] for a range of P and Q with X/R = {𝟎. 𝟓, 𝟏. 𝟎, 𝟐. 𝟎, 𝟒. 𝟎}, 

white areas have error ≤1%, error magnitudes ≥10% are set to 10%. 
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Figure 20. Voltage drop linearization error [%] for a range of R and X with S = ±50kVA, (PF) =

{𝟎. 𝟗𝟓, 𝟎. 𝟗𝟖}, white areas have error ≤1%, error magnitudes ≥10% are set to 10%. 
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5. LINEAR REGRESSION MODEL SELECTION 
 

Chapter 4 introduces a linear regression approach for estimating series impedance parameters 𝑅 

and 𝑋 of all branches of a radial secondary circuit. The method presented so far utilizes the linear 

voltage drop approximation (3), which is an obvious candidate for building a parameter 

estimation linear regression model. However, linear regression allows models with higher order 

terms, cross-couplings, or any other functions of the predictor variables 𝐼𝑅 and 𝐼𝑋. Unlike 𝑅 and 

𝑋 in (3), the coefficients of other terms do not have a direct physical meaning, but including 

them in the regression models may better capture the intrinsic nonlinear relationship between the 

response variables Δ𝑉 = 𝑉1 − 𝑉2 and the predictor variables 𝐼𝑅 and 𝐼𝑋 thus, leading to better 

estimates for 𝑅 and 𝑋. 

 

To add additional terms to the radial secondary circuit parameter estimation method discussed in 

chapter 4, the design matrix 𝓧 and the parameter vector 𝜷 need to be modified accordingly. The 

response variable 𝒚 is not changed by adding predictor terms. For example, if the second order 

current terms are added to the parallel branch regression problem in section 4.2, the measurement 

design matrix becomes 

 
𝓧 = [−(𝑁 − 1)𝑰𝑅1, −(𝑁 − 1)𝑰𝑋1, 𝑰𝑅2, 𝑰𝑋2, … , 𝑰𝑅𝑁, 𝑰𝑋𝑁, 

            −(𝑁 − 1)𝑰𝑅1
2 , −(𝑁 − 1)𝑰𝑋1

2 , 𝑰𝑅2
2 , 𝑰𝑋2

2 , … , 𝑰𝑅𝑁
2 , 𝑰𝑋𝑁

2 ] 
(17) 

and the parameter vector becomes 

 𝜷 = [𝑅1, 𝑋1, … , 𝑅𝑁 , 𝑋𝑁 , 𝛽𝑅𝑠𝑞,1, 𝛽𝑋𝑠𝑞,1, … , 𝛽𝑅𝑠𝑞,𝑁 , 𝛽𝑋𝑠𝑞,𝑁], (18) 

where parameters 𝛽𝑅𝑠𝑞,1, 𝛽𝑋𝑠𝑞,1, … , 𝛽𝑅𝑠𝑞,𝑁 , 𝛽𝑋𝑠𝑞,𝑁 do not have a direct physical meaning. The 

response vector 𝒚 remains unchanged. Sections 5.1 and 5.2 compare the performance of different 

regression models on the two-bus test case from Figure 4 and the 66-node test case from Figure 

5. Finally, Section 5.3 presents an adaptive approach that utilizes two different regression 

models. 

5.1. Linear Regression Model Selection on the Two-Bus Test Case 

5.1.1. Regression Model Comparison 

To compare the parameter estimation accuracy with different regression models, the (known) 

parameters of a two-bus test circuit (Figure 4) were estimated with a set of 168 samples of real 

residential AMI active power measurements and randomly generated power factors. The relative 

errors of the estimated parameter, 𝑅𝑒𝑟𝑟 = (𝑅𝑒𝑠𝑡 − 𝑅𝑡𝑟𝑢𝑒) 𝑅𝑡𝑟𝑢𝑒 × 100%⁄  and 𝑋𝑒𝑟𝑟 =
(𝑋𝑒𝑠𝑡 − 𝑋𝑡𝑟𝑢𝑒)/𝑋𝑡𝑟𝑢𝑒 × 100%, are listed in Table 2. 

 

The results indicate that regression models that only utilize the first order terms of 𝐼𝑅 and 𝐼𝑋 

(models 9 and 10 shown in orange) are not the best ones. Instead, the parameter estimation error 

can be reduced over 8% by adding the second order terms of both of the predictor variables 

(models 1 and 2 shown in blue). Adding the intercept term (in table the absence of “-1”) or the 

power factor term (in table “(PF)”) to a given model lead to no considerable improvement. The 

best performance is obtained with regression model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2, which includes the 
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first and second order terms of 𝐼𝑅 and 𝐼𝑋 as well as the intercept term as predictors and has 

Δ𝑉 = 𝑉1 − 𝑉2 as the response variable. The model does not include the power factor term. 

 
Table 2. Estimated parameter errors with different linear regression models 

Model 

Rank 
Regression Model 

𝑹𝒆𝒓𝒓 

[%] 

𝑿𝒆𝒓𝒓 

[%] 

|𝑹𝒆𝒓𝒓| + |𝑿𝒆𝒓𝒓| 
[%] 

1 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 0.42 -0.07 0.49 

2 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 − 1 0.43 -0.07 0.50 

3 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 + (𝑃𝐹) − 1 0.49 -0.07 0.56 

4 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 + (𝑃𝐹) 1.01 -0.39 1.40 

5 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 − 1 1.04 -0.41 1.44 

6 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 1.06 -0.41 1.47 

7 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + (𝑃𝐹) − 1 1.21 -0.41 1.62 

8 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + (𝑃𝐹) 1.59 -0.71 2.29 

9 Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 8.35 -0.44 8.79 

10 Δ𝑉~𝐼𝑅 + 𝐼𝑋 13.62 -0.42 14.04 

11 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + (𝑃𝐹) − 1 14.06 -0.66 14.72 

12 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑋
2 13.52 -1.27 14.79 

13 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + (𝑃𝐹) 14.11 -0.69 14.80 

14 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑋
2 + (𝑃𝐹) − 1 13.89 -1.57 15.46 

15 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑋
2 − 1 11.17 -4.53 15.70 

16 Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑋
2 + (𝑃𝐹) 15.07 -2.63 17.70 

 

5.1.2. Parameter Error Dependency on R and X 

As shown in subsection 4.5, the true circuit branch series impedance has a significant impact on 

the linearized voltage drop approximation accuracy. The impact of the linear voltage drop 

equation accuracy on the parameter estimation accuracy was studied by estimating the series 

impedance parameters of the two-bus circuit (Figure 4) with different series impedance 

parameters R and X. The parameters were estimated with regression models Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 

(model rank 1 in Table 2) and Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 − 1 (model rank 2 in Table 2) using one 

week (168 samples) of measurement data of the 3-phase test feeder secondary circuit number 2 

load (Figure 5). For each R and X pair, first the load voltages were simulated and then, based on 

the simulated load voltages and P and Q values, the branch parameters were estimated and 

compared to the true parameters. 

 

The parameter estimation errors and the average simulated load voltages are summarized for 

regression model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 in Figure 21. The R estimation errors are higher with lower 

X/R-ratios, and the X estimation errors are higher with very high X/R-ratios or a band of 

intermediate X/R-ratios. Typically, distribution transformer series impedance Z is between 1.5 % 

and 6 % and X/R-ratios between 1.5 and 5. Thus, service transformer R and X estimation errors 

below 2 % are expected. Since secondary circuit line series impedances and X/R ratios are 

considerably smaller, somewhat higher relative estimation error may occur. However, due to the 

smaller absolute impedance of lines, the resulting absolute impedance error is not expected to be 

higher.  
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Figure 21. Relative parameter estimation errors with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 − 𝟏, white areas 

have error ≤1%, error magnitudes ≥10% are set to 10%. 

 

Figure 22 shows the results for the regression model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 − 1. The model is 

clearly superior to model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1, especially at higher branch impedances. 
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Figure 22. Relative parameter estimation errors with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 + 𝑰𝑹

𝟐 + 𝑰𝑿
𝟐 − 𝟏, 

error magnitudes ≥5% are set to 5%. 

 

5.1.3. Parameter Error Dependency on Reverse Powerflow from PV 

As shown in subsection 4.5, reverse power flow can significantly deteriorate the linearized 

voltage drop accuracy. To see how reverse power flows influence the parameter estimation 

accuracy, the branch series impedance parameters of the two-bus circuit (Figure 4) were 

estimated with load power factor values (PF) = [0.8,1.0] and PV penetration levels 

𝐸𝑃𝑉 𝐸𝐿𝑜𝑎𝑑⁄ = [0,200] % based on energy. The PV generation values shown in Figure 23 were 

scaled so that PV generated weekly energy was equal to a given fraction (PV penetration) of the 

weekly load consumption. 

 

 
Figure 23. PV generation profile for the test data week before scaling 

 

Figure 24 and Figure 25 display the parameter estimation accuracies for model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 

and for model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 − 1, respectively. Once again, model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 +
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𝐼𝑋
2 − 1 clearly outperforms model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1. Figure 25 indicates that model Δ𝑉~𝐼𝑅 +

𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 − 1 𝑅 estimation errors are slightly higher at high PV penetration levels and low 

power factor values while the 𝑋 estimation error are very accurate independent of the PV 

penetration and the power factor. 

 

 
Figure 24. Relative parameter estimation errors with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 − 𝟏 for a range 

of load power factor and PV penetration 

 

 
Figure 25. Relative parameter estimation errors with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 + 𝑰𝑹

𝟐 + 𝑰𝑿
𝟐 − 𝟏 for 

a range of load power factor and PV penetration 

 

5.2. Regression Model Selection on the 66-Node Test Circuit 

5.2.1. Regression Model Comparison without Measurement Error 

The accuracy of the hierarchical radial circuit parameter estimation accuracy presented in section 

4 was analyzed by estimating all the secondary circuit parameters in the 66-node circuit and 

calculating the average absolute error of the estimated R and X parameters. 
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Table 3 compares the errors of the parameters estimated with different regression models using 

8759 measurement samples (one year).  The meters are assumed to be perfectly accurate and able 

to record voltage and current without any measurement error. The results are listed in the order 

from the simplest regression model to the most complicated. The best results (in terms of the 

absolute average |𝑅𝑒𝑟𝑟| + |𝑋𝑒𝑟𝑟|) are obtained with regression model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅 × 𝐼𝑋 + 𝐼𝑅
2 +

𝐼𝑋
2 − 1 (linear, quadratic and cross-coupling terms of the current components but no intercept or 

power factor terms). In all cases, regression models with intercept performed slightly worse than 

the respective models without the intercept. 

 
Table 3. Relative parameter estimation errors for different linear regression models without 

measurement error 

Included Predictor Variables 

(All Models Include 𝑰𝑹 and 𝑰𝑿) 
Avg. Abs. 𝑹𝒆𝒓𝒓 [%] Avg. Abs. 𝑿𝒆𝒓𝒓 [%] Avg. 

Abs. 
|𝑹𝒆𝒓𝒓| +

|𝑿𝒆𝒓𝒓| 

[%] 

Max. 

𝑹𝒆𝒓𝒓 

[%] 

Max. 

𝑿𝒆𝒓𝒓 

[%] 

Model 

Order 

(Best to 

Worst) 
Inter-

cept 
𝑰𝑹 × 𝑰𝑿 𝑰𝑹

𝟐  𝑰𝑿
𝟐  (PF) Lines Trafos All Lines Trafos All 

     0.517 7.833 2.010 0.349 1.471 0.578 2.588 18.548 2.671 11 

X     0.588 12.712 3.063 0.349 1.553 0.594 3.657 29.941 2.739 12 

  X   0.151 1.502 0.426 0.350 1.593 0.604 1.030 2.328 2.781 8 

X  X   0.169 1.584 0.458 0.350 1.592 0.604 1.062 3.969 2.781 9 

  X X  0.088 0.522 0.176 0.213 0.603 0.293 0.469 0.839 1.283 5 

X  X X  0.106 0.861 0.260 0.213 0.607 0.294 0.554 2.516 1.283 6 

 X X X  0.035 0.165 0.062 0.026 0.137 0.049 0.111 0.570 0.408 1 

X X X X  0.056 0.618 0.171 0.026 0.144 0.050 0.221 1.994 0.413 2 

  X X X 0.184 0.900 0.330 0.476 0.553 0.492 0.822 2.654 1.948 7 

X  X X X 0.209 1.755 0.524 0.508 1.867 0.785 1.310 4.177 3.313 10 

 X X X X 0.066 0.657 0.187 0.060 0.168 0.082 0.269 2.168 0.411 3 

X X X X X 0.074 0.980 0.259 0.085 0.483 0.167 0.425 2.965 1.021 4 

 

The errors of parameters 𝑅 and 𝑋 estimated with regression model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 and 

Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅 × 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 − 1 are shown in Figure 26 and Figure 27, respectively. Each 

bar represents a low-voltage branch in the 66-node test circuit. Branch names that start with L 

are lines, and branch names that start with T include service transformers.  The errors of the 

estimated impedance magnitude and X/R-ratio for model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 and Δ𝑉~𝐼𝑅 + 𝐼𝑋 +
𝐼𝑅 × 𝐼𝑋 + 𝐼𝑅

2 + 𝐼𝑋
2 − 1 are shown in Figure 28 and Figure 29, respectively. Without measurement 

error, regression model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅 × 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 − 1 estimates all the parameters with a 

very high accuracy. Regression model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 estimates the line parameters with a 

relatively good accuracy but does poorly especially in estimating the service transformer 

resistances and X/R-ratios. The transformer R parameters are clearly over-estimated while the 

transformer X parameters are clearly under-estimated. An explanation for this is the linearized 

voltage drop approximation illustrated in Figure 20, where the higher the X/R-ratios and the 

impedance magnitudes are, the more the linearized voltage drop equation underestimates the 

voltage drop. As a result, the transformer resistances will be over-estimated and the reactances 

under-estimated in the linear regression parameter estimation. This is the direction where the 

voltage drop approximation error reduces the fastest. 
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Figure 26. Relative errors of estimated R and X with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 − 𝟏 without 

measurement error 

 

 
Figure 27. Relative errors of estimated R and X with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 + 𝑰𝑹𝑰𝑿 + 𝑰𝑹

𝟐 +
𝑰𝑿

𝟐 − 𝟏 without measurement error 
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Figure 28. Relative errors of estimated Z and X/R-ratio with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 − 𝟏 

without measurement error 

 

 
Figure 29. Relative errors of estimated Z and X/R-ratio with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 + 𝑰𝑹𝑰𝑿 +

𝑰𝑹
𝟐 + 𝑰𝑿

𝟐 − 𝟏 without measurement error 

 

 

 

-1

-0.5

0

0.5

Z
err

 = (|Z
est

|-|Z
orig

|)/|Z
orig

|  100
D

if
fe

re
n

c
e
 [

%
]

L
1
-1

L
1
-2

L
1
-3

L
1
-4

L
1
-5

L
3
-1

L
3
-2

L
3
-3

L
3
-4

L
4
-1

L
4
-2

L
4
-3

L
4
-4

L
4
-5

L
5
-0

L
5
-1

L
5
-2

L
5
-3

L
5
-4

L
6
-0

1

L
6
-0

2

L
6
-1

L
6
-2

L
6
-3

L
6
-4

L
7
-0

2

L
7
-1

L
7
-2

L
7
-3

L
7
-4

L
8
-0

2

L
8
-1

L
8
-2

L
8
-3

L
8
-4

L
9
-1

L
9
-2

L
1
0

-0
-L

1
0

-2

L
1
0

-1

T
1

T
2
-L

2
-1

T
3

T
4
-L

4
-0

T
5

T
6

T
7
-L

7
-0

1

T
8
-L

8
-0

1

T
9
-L

9
-0

T
1
0

-1.5

-1

-0.5

0

X
est

/R
est

 - X
orig

/R
orig

D
if
fe

re
n

c
e
 [

U
n
it

le
ss

]

L
1
-1

L
1
-2

L
1
-3

L
1
-4

L
1
-5

L
3
-1

L
3
-2

L
3
-3

L
3
-4

L
4
-1

L
4
-2

L
4
-3

L
4
-4

L
4
-5

L
5
-0

L
5
-1

L
5
-2

L
5
-3

L
5
-4

L
6
-0

1

L
6
-0

2

L
6
-1

L
6
-2

L
6
-3

L
6
-4

L
7
-0

2

L
7
-1

L
7
-2

L
7
-3

L
7
-4

L
8
-0

2

L
8
-1

L
8
-2

L
8
-3

L
8
-4

L
9
-1

L
9
-2

L
1
0

-0
-L

1
0

-2

L
1
0

-1

T
1

T
2
-L

2
-1

T
3

T
4
-L

4
-0

T
5

T
6

T
7
-L

7
-0

1

T
8
-L

8
-0

1

T
9
-L

9
-0

T
1
0

-0.4

-0.2

0

0.2

0.4

Z
err

 = (|Z
est

|-|Z
orig

|)/|Z
orig

|  100

D
if
fe

re
n

c
e
 [

%
]

L
1
-1

L
1
-2

L
1
-3

L
1
-4

L
1
-5

L
3
-1

L
3
-2

L
3
-3

L
3
-4

L
4
-1

L
4
-2

L
4
-3

L
4
-4

L
4
-5

L
5
-0

L
5
-1

L
5
-2

L
5
-3

L
5
-4

L
6
-0

1

L
6
-0

2

L
6
-1

L
6
-2

L
6
-3

L
6
-4

L
7
-0

2

L
7
-1

L
7
-2

L
7
-3

L
7
-4

L
8
-0

2

L
8
-1

L
8
-2

L
8
-3

L
8
-4

L
9
-1

L
9
-2

L
1
0

-0
-L

1
0

-2

L
1
0

-1

T
1

T
2
-L

2
-1

T
3

T
4
-L

4
-0

T
5

T
6

T
7
-L

7
-0

1

T
8
-L

8
-0

1

T
9
-L

9
-0

T
1
0

-0.02

0

0.02

0.04

X
est

/R
est

 - X
orig

/R
orig

D
if
fe

re
n

c
e
 [

U
n
it

le
ss

]

L
1
-1

L
1
-2

L
1
-3

L
1
-4

L
1
-5

L
3
-1

L
3
-2

L
3
-3

L
3
-4

L
4
-1

L
4
-2

L
4
-3

L
4
-4

L
4
-5

L
5
-0

L
5
-1

L
5
-2

L
5
-3

L
5
-4

L
6
-0

1

L
6
-0

2

L
6
-1

L
6
-2

L
6
-3

L
6
-4

L
7
-0

2

L
7
-1

L
7
-2

L
7
-3

L
7
-4

L
8
-0

2

L
8
-1

L
8
-2

L
8
-3

L
8
-4

L
9
-1

L
9
-2

L
1
0

-0
-L

1
0

-2

L
1
0

-1

T
1

T
2
-L

2
-1

T
3

T
4
-L

4
-0

T
5

T
6

T
7
-L

7
-0

1

T
8
-L

8
-0

1

T
9
-L

9
-0

T
1
0



45 

5.2.2. Regression Model Comparison with Measurement Error 

While the previous section assumes that all voltages and currents are perfectly known, generally 

any meter has some measurement noise that introduces error. Next, the regression model 

parameter estimation errors were analyzed with 1% P, 1% Q, and 0.2% V random uniform 

measurement error. The 0.2% voltage error correspond to the ANSI .2 accuracy class meters 

[45]. The 1% active and reactive power measurement error level is at or above ANSI .2 and .5 

accuracy class meters [45]. This measurement error does not include calibration problems or 

large bias, and instead is only focused on the stochastic noise common to measurement devices. 

Table 4 lists the results for all secondary circuit branch R and X parameters estimated with 8759 

measurement samples (one year). With measurement error, simpler models perform better than 

complicated ones. The best overall parameter estimates are obtained with the simplest model 

Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1. Line parameters are estimated best with Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 while transformer 

resistances are estimated best with model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 − 1. 

 
Table 4. Relative parameter estimation errors for different linear regression models with 1% P, 1% 

Q, and 0.2% V measurement error 

Included Predictor Variables 

(All Models Include 𝑰𝑹 and 𝑰𝑿) 
Avg. Abs. 𝑹𝒆𝒓𝒓 [%] Avg. Abs. 𝑿𝒆𝒓𝒓 [%] Avg. 

Abs. 
|𝑹𝒆𝒓𝒓| +

|𝑿𝒆𝒓𝒓| 

[%] 

Max. 

𝑹𝒆𝒓𝒓 

[%] 

Max. 

𝑿𝒆𝒓𝒓 

[%] 

Model 

Order 

(Best to 

Worst) 
Inter-

cept 
𝑰𝑹 × 𝑰𝑿 𝑰𝑹

𝟐  𝑰𝑿
𝟐  (PF) Lines Trafos All Lines Trafos All 

     2.83 7.38 3.76 3.50 1.51 3.10 6.86 15.30 13.18 1 

X     3.08 12.18 4.94 3.48 1.57 3.09 8.03 26.09 13.20 3 

  X   5.44 1.18 4.57 3.49 1.60 3.10 7.68 32.61 13.18 2 

X  X   14.14 6.42 12.56 3.52 1.60 3.13 15.69 86.10 13.14 4 

  X X  10.40 2.76 8.84 15.80 2.02 12.98 21.82 54.00 43.07 5 

X  X X  16.27 7.95 14.57 15.85 2.01 13.02 27.59 108.13 43.57 8 

 X X X  10.13 3.85 8.85 20.16 4.01 16.87 25.72 47.77 54.19 6 

X X X X  17.19 8.52 15.42 20.23 4.08 16.93 32.35 101.94 54.30 9 

  X X X 16.25 8.24 14.62 14.80 1.96 12.18 26.79 116.15 60.25 7 

X  X X X 18.35 9.93 16.63 23.31 5.34 19.64 36.27 118.64 66.16 10 

 X X X X 19.68 9.67 17.64 27.54 4.54 22.85 40.48 96.29 85.72 11 

X X X X X 32.84 21.02 30.42 65.05 17.91 55.43 85.86 187.20 225.31 12 

 

The errors of the 𝑅 and 𝑋 parameters that are estimated with the regression models Δ𝑉~𝐼𝑅 +
𝐼𝑋 + 𝐼𝑅

2 + 𝐼𝑋
2 + 𝐼𝑅 × 𝐼𝑋 − 1 (best without measurement error) and Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 (best with 

measurement error) are shown in Figure 30 and Figure 31, respectively. With measurement error, 

model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 + 𝐼𝑅 × 𝐼𝑋 − 1 estimates some parameters with considerably higher 

error than the model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1. This is likely caused by the measurement errors that can 

be large for the squared and cross-coupling terms. Model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 estimates most of the 

line R and X parameters and the transformer X parameters with an acceptable accuracy but does 

worse in estimating the transformer (branch names that start with a T) resistances. 

 

The errors of the impedance magnitude and X/R-ratio parameters that are estimated with the 

regression models Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 and Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 + 𝐼𝑅 × 𝐼𝑋 − 1 are shown in Figure 

32 and Figure 33, respectively. Excluding the parameters L3-4 and L9-2, Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 

estimates all the impedance magnitudes with a good accuracy but performs worse in estimating 
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the transformer X/R-ratios. Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 + 𝐼𝑋

2 + 𝐼𝑅 × 𝐼𝑋 − 1 estimates many impedance 

magnitudes with considerable error. 

 

 
Figure 30. Relative errors of estimated R and X with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 − 𝟏 with 1% P, 

1% Q, and 0.2% V measurement error 

 

 
Figure 31. Relative errors of estimated R and X with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 + 𝑰𝑹

𝟐 + 𝑰𝑿
𝟐 + 𝑰𝑹 ×

𝑰𝑿 − 𝟏 with 1% P, 1% Q, and 0.2% V measurement error 
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Figure 32. Relative errors of estimated Z and X/R-ratio with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 − 𝟏 with 

1% P, 1% Q, and 0.2% V measurement error 

 

 
Figure 33. Relative errors of estimated Z and X/R-ratio with regression model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 + 𝑰𝑹

𝟐 +
𝑰𝑿

𝟐 + 𝑰𝑹 × 𝑰𝑿 − 𝟏 with 1% P, 1% Q, and 0.2% V measurement error 
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5.3. Adaptive Regression Model Selection 

Next, an adaptive regression model selection approach is discussed. Subsection 5.2 results show 

that the best overall parameter estimation accuracy in the presence of measurement error is 

obtained with model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1. However, other models estimate better service 

transformer parameters, because the transformer X/R-ratios and impedance magnitudes are 

higher than those of lines, which results in higher errors in the linearized voltage drop 

approximation as discussed in Subsection 5.2.1. Based on this insight, this section discusses an 

adaptive approach where regression problems consisting solely of line parameters are estimated 

with model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 and regression problems involving transformer parameters are 

estimated with a regression model that includes other terms. For this work, the topology is 

assumed to be known, so each branch is known as either a line or transformer, and all 

connections between branches are known. 

 

The adaptive approach was analyzed by estimating the transformer R and X parameters in the 

66-node test case with 8759 measurement samples. Six different regression models for 

transformer regression problems were analyzed, and the line parameters were estimated using 

model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1. The results without measurement error are listed in Table 5, and the 

results with 1% P, 1% Q and 0.2% V measurement error are listed in Table 6. Similar to section 

5.1 and 5.2, complicated models perform better without measurement error and simple models 

perform better in the presence of measurement error. The best overall parameter estimates were 

obtained with model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 − 1, i.e., a model that includes the squared current term 

𝐼𝑅
2. 

 
Table 5. Relative parameter estimation errors of the adaptive approach with different regression 

models for regression problems including transformers without measurement Error 

Included Predictor Variables 

for Regression Problems with 

Transformer Parameters 

(All Models Include 𝑰𝑹 and 𝑰𝑿) 

Avg. Abs. 𝑹𝒆𝒓𝒓 [%] Avg. Abs. 𝑿𝒆𝒓𝒓 [%] Avg. 

Abs. 
|𝑹𝒆𝒓𝒓| +

|𝑿𝒆𝒓𝒓| 

[%] 

Max. 

𝑹𝒆𝒓𝒓 

[%] 

Max. 

𝑿𝒆𝒓𝒓 

[%] 

Model 

Order 

(Best to 

Worst) Inter-

cept 
𝑰𝑹 × 𝑰𝑿 𝑰𝑹

𝟐  𝑰𝑿
𝟐  (PF) Lines Trafos All Lines Trafos All 

     0.517 7.833 2.010 0.349 1.471 0.578 2.588 18.548 2.671 3 

  X   0.517 1.384 0.694 0.349 1.593 0.603 1.297 2.638 2.782 4 

   X  0.517 12.371 2.937 0.349 9.506 2.218 5.154 31.464 14.792 6 

  X X  0.517 0.439 0.501 0.349 0.575 0.395 0.896 2.638 1.218 2 

 X    0.517 7.903 2.025 0.349 6.657 1.636 3.661 18.615 9.563 5 

 X X X  0.517 0.186 0.450 0.349 0.100 0.298 0.748 2.638 1.218 1 
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Table 6. Relative parameter estimation errors of the with different regression models for 

regression problems including transformers with 1% P, 1% Q, and 0.2% V measurement error 

Included Predictor Variables 

for Regression Problems with 

Transformer Parameters 

(All Models Include 𝑰𝑹 and 𝑰𝑿) 

Avg. Abs. 𝑹𝒆𝒓𝒓 [%] Avg. Abs. 𝑿𝒆𝒓𝒓 [%] Avg. 

Abs. 
|𝑹𝒆𝒓𝒓| +

|𝑿𝒆𝒓𝒓| 

[%] 

Max. 

𝑹𝒆𝒓𝒓 

[%] 

Max. 

𝑿𝒆𝒓𝒓 

[%] 

Model 

Order 

(Best to 

Worst) Inter-

cept 
𝑰𝑹 × 𝑰𝑿 𝑰𝑹

𝟐  𝑰𝑿
𝟐  (PF) Lines Trafos All Lines Trafos All 

     2.834 7.380 3.761 3.500 1.514 3.095 6.857 15.299 13.178 4 

  X   2.834 1.009 2.461 3.500 1.603 3.113 5.574 13.667 13.178 1 

   X  2.834 11.809 4.665 3.500 9.293 4.683 9.348 26.657 15.161 6 

  X X  2.834 2.878 2.843 3.500 2.108 3.216 6.059 13.667 13.178 2 

 X    2.834 7.444 3.774 3.500 6.547 4.122 7.897 15.339 13.178 5 

 X X X  2.834 3.274 2.924 3.500 3.205 3.440 6.364 15.846 13.178 3 

 

Figure 34 and Figure 35 compare the performance of the adaptive approach with (transformer 

regression problem) models Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1, Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 − 1, and Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅

2 +
𝐼𝑋

2 − 1 with different P, Q, and V error levels and sample sizes. Model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 is equal 

to the nonadaptive approach with regression model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1. Model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 −

1 beats model Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 as long as sufficiently large sample size is used. As shown in 

Figure 35, model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 − 1 outperforms model Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅

2 + 𝐼𝑋
2 − 1 

independent of the error level and sample size. Based on these results, the rest of this report 

utilizes the adaptive parameter estimation approach where regression models Δ𝑉~𝐼𝑅 + 𝐼𝑋 − 1 

and Δ𝑉~𝐼𝑅 + 𝐼𝑋 + 𝐼𝑅
2 − 1 are used for regression problems without and with transformer 

parameters, respectively. 

 

 
Figure 34. Difference of relative errors of estimated R and X between adaptive regression model 

𝚫𝑽~𝑰𝑹 + 𝑰𝑿 + 𝑰𝑹
𝟐 − 𝟏 and the non-adaptive model 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 − 𝟏 
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Figure 35. Difference of relative errors of estimated R and X between regression models 𝚫𝑽~𝑰𝑹 +

𝑰𝑿 + 𝑰𝑹
𝟐 − 𝟏 and 𝚫𝑽~𝑰𝑹 + 𝑰𝑿 + 𝑰𝑹

𝟐 + 𝑰𝑿
𝟐 − 𝟏 
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6. IMPLEMENTATION 
 

This chapter discusses the implementation of the distribution system secondary circuit parameter 

estimation. 

6.1. Data Flows for Distribution System Parameter Estimation 

DSPE has an important role of validating and refining the existing utility feeder models and thus, 

preparing them for increased situational awareness and operational tasks in the future smart 

distribution systems. It may be beneficial to integrate the offline DSPE closely with the current 

distribution system simulator, since DSPE requires moving and managing large quantities of 

data, much of which is shared with the current distribution system model/simulator as shown in 

Figure 36. 

 

The current model components, parameters and connectivity will be fetched from GIS. SCADA 

will transmit the measurements and device states. AMI/MDMS will provide the load profiles, 

and DER the generation profiles, as an input to time series power flows that simulate the service 

transformer primary voltages. By leveraging the distributed voltage measurements from the AMI 

and DER as well, the parameter and topology estimator will calculate the secondary system 

component parameters and pass the refined component parameters and permanent connectivity 

(in case topology estimation is also performed) to GIS. The Big Data challenge is efficiently 

managing these data flows through advanced data analytics, optimized database queries, and 

rapid time series analysis. 

 

 
Figure 36. Data flows for distribution system secondary circuit parameter estimation 

6.2. Algorithm 

The high-level secondary circuit parameter estimation algorithm is shown in Figure 37. The 

algorithm starts by compiling the existing utility feeder model in the distribution system 

simulator for time series power flow analysis. For all analysis in this report, the distribution 

system power flow is solved by OpenDSS, and all parameter estimation algorithms are 

implemented in MATLAB [46], [47]. The input data required for the time series analysis 

includes load active and reactive power (or current and power factor) measurements, substation 
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voltage measurements, and PV generation. The output from the time series power flows 

solutions is the service transformer MV-side voltages. 

 

Once the time series power flow has finished, the parameter estimation algorithm processes one 

secondary circuit at a time, estimating the secondary circuit branch impedances with the 

hierarchical approach introduced in section 4. For each secondary circuit the algorithm does the 

following. First, the measurement samples are selected following the principles discussed in 

section 4.5.Then, at each iteration the algorithm identifies and selects a suitable circuit 

subsections with N parallel branches as explained in section 4. Next, the branch parameters are 

estimated using one of the two parallel branch estimation approaches discussed in section 4.2, 

the ordinary least squares estimator introduced in section 3.2.1., and the adaptive regression 

model selection introduced in section 5.3. With small number of parallel branches, either of the 

parallel branch parameter estimation approaches can be used while at large number of parallel 

branches, the simultaneous parallel branch estimation approach discussed in section 4.2.1 

becomes preferable. When the ordinary least squares estimator results in non-physical (negative 

or too large) parameters, the linearly constrained least squares estimator introduced in section 

3.2.2 can be used instead. The adaptive regression model selection includes the second order 

terms of the resistive (real power current) 𝐼𝑅
2 to all the regression problems that include 

transformer parameters in order to compensate for the larger error of the linearized voltage drop 

equation over these branches. Alternative regression models can be considered depending on the 

error level in the available measurements. 

 

A key advantage of the parameter estimation algorithm described is that it does not require any 

power flow solutions during the linear regression optimization of the parameters. Validation and 

error analysis is done by running another time series power flow simulation with the estimated 

parameters and comparing the simulated and measured voltages at the ends of the secondary 

system. 

 

The manual verification of the parameter estimation results is very important to avoid any 

possibilities of replacing previously accurate impedance parameters with poorer estimates. In the 

manual verification step, the user needs to compare the estimated parameter values and how 

closely they align with physically expected values. This step is also useful for detecting any data 

or topology problems that become evident in the form of physically impossible parameter 

estimates or insignificant linear regression p values of some parameters. Insignificant p value of 

an estimated parameter (regression coefficient) indicates that we do not have sufficient evidence 

to reject the null hypothesis that the parameter is a given value (here zero). In other words, we 

are not confident rejecting that the parameter has no role in the regression. In impedance 

parameter estimation, this would likely imply that either the regression model is incorrect 

(missing measurements, incorrect topology, etc.) or the measurement data is inaccurate due to 

gross errors. However, insignificant parameters (regression coefficients) may also be caused by 

some of the linear regression assumptions being invalid. For detailed discussion on these 

assumptions, the reader is referred to e.g. [48]. 
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Figure 37. High-level algorithm for distribution system secondary circuit parameter estimation 
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7. RESULTS 
 

7.1. Three-Phase Test Circuit 

The hierarchical linear regression parameter estimation algorithm was used to estimate the three-

phase test system secondary circuit parameters. Before estimating the parameters of a secondary 

circuit, the algorithm merges all the series branches that have no measurements in between, e.g., 

the service transformer and the service drop of secondary circuit no. 2 (Figure 5). Figure 38 

shows the merged secondary circuit tree topologies that the algorithm has processed based on the 

OpenDSS circuit model. The node names and the node upstream branch names are shown on the 

lower left and upper right sides of the nodes, respectively. The transformer medium voltage and 

low voltage side nodes are abbreviated with “HV” and “LV’, respectively. The circuits where the 

transformer is merged with its downstream branch do not have a node with “LV”. Branches that 

include a transformer have “T” and branches that include a line have “L” and in their label. 

 

 

 

 
Figure 38. Merged secondary circuit trees with bus names shown in blue and bus upstream 

branch names shown in black 

 

7.1.1. Parameter Estimation Accuracy without Measurement Error 

Typically, the utilities have abundant AMI measurement data that can be filtered for the offline 

parameter estimation. However, in order to keep the parameter estimation algorithm 

computationally and data efficient, the necessary number of measurement samples must be 

determined. A sufficiently large measurement sample should be selected to achieve the highest 

possible accuracy, but at some point adding more samples is expected to have diminishing 
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marginal returns. The parameter estimation error dependency on the number of measurement 

samples was studied on the 66-node test circuit. Figure 39 shows the relative errors of the 

estimated R and X parameters with measurement sample lengths 1-53 weeks when no 

measurement error is present. The measurement samples were selected in a random order from 

the available set of 53 weeks of load data. Each plot contains 49 lines, one for each R or X 

parameter. The average error of all parameters is shown with the red bold line. As the figure 

indicates, when no measurement error is present, there is no need to utilize large numbers of 

measurement samples. It should also be noted that utilizing a larger number of measurement 

samples can also reduce parameter estimation accuracy depending on the characteristics of the 

additional samples. Generally, parameter estimation results depend on the characteristics of the 

utilized measurement data and measurement error. 

 

 
Figure 39. Relative errors of the estimated R and X with different measurement sample sizes 

without measurement error 

 

The detailed parameter estimation accuracies without measurement error are shown in Figure 40. 

All the parameters are estimated with an error less than 3%. As discussed in chapter 5, 

considerably better parameter estimation accuracies without measurement error are achieved 

with alternative regression models. However, the proposed adaptive regression model approach 
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5 10 15 20 25 30 35 40 45 50
0

1

2

3

Number of Weeks of Data Used

E
rr

o
r 

[%
]

R
err

 = (R
est

-R
orig

)/R
orig

  100

5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

Number of Weeks of Data Used

E
rr

o
r 

[%
]

X
err

 = (X
est

-X
orig

)/X
orig

  100



57 

 
Figure 40. Relative errors of the estimated R and X with 53 weeks of measurement data and 

without measurement error 

 

7.1.2. Parameter Estimation Accuracy with Power Measurement Error 

Next, the parameter estimation error dependency on P and Q measurement error and sample size 

was studied. Measurement error was added to each active and reactive power measurement 

sample 𝑖 with 𝑃𝑖 = (1 + 𝛿)𝑃𝑖 and 𝑄𝑖 = (1 + 𝛿)𝑄𝑖, where the measurement error magnitude was 

set to 𝛿 ∈ Uniform(−0.05,0.05). Perfect voltage measurements were assumed. 

 

Figure 41 shows the average absolute R and X estimation errors of all the 66-node test circuit 

parameters with measurement sample lengths from 1 through 50 weeks with different P and Q 

measurement error levels and sample sizes. With reasonably small measurement error levels and 

sufficient sample sizes, the average parameter estimation errors are well below 1-2%. In the 

presence of measurement error, increasing the measurement sample size considerably improves 

the accuracy of the estimated parameters up to the sample sizes of around 10 weeks (1680 

samples) after which adding further samples has only small if any improvement. The estimation 

accuracy does not improve monotonically with the sample size due to the randomness of the load 

data and the sample selection. If Figure 41 was repeatedly plotted over a randomly drawn order 

of the load data, the average error of the repetitions is expected to reduce monotonically as the 

sample size grows. 
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Figure 41. Average relative errors of R (left) and X (right) estimated with 1-50 weeks of load data 

and 0-5% of P and Q measurement error 

 

7.1.3. Parameter Estimation Accuracy with Voltage Measurement Error 

Next, parameter estimation performance was studied in the presence of voltage measurement 

error. The same principle was used as with the power measurement error above, but now voltage 

measurement error up to 0.5% (e.g. Class 0.5 smart meter) was added to the voltage 

measurements. Figure 42 shows the average absolute R and X estimation errors of all the 66-

node test circuit parameters with measurement sample lengths from 1 through 50 weeks with 

different voltage measurement error levels and sample sizes. Again the errors of the estimated 

parameters reduce (although not monotonically) as the sample size is grown. Clearly, voltage 

measurement error has a much larger influence on the parameter estimation accuracy than the 

power measurement error. Therefore, it is an imperative to have high quality voltage 

measurements. 

 

 
Figure 42. Average relative errors of R (left) and X (right) estimated with 1-50 weeks of load data 

and 0-0.5% of V measurement error, error magnitudes >10% are set to 10% 
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It is relevant to point out the reason for the parameter estimation to be very sensitive for the 

voltage measurement error. Figure 43 shows the boxplots of load voltage measurement errors at 

error level 0.2%, voltage drops over the service lines, and voltage drops over the service 

transformer for the entire year of load data (8760 samples). Each boxplot on the top of Figure 43, 

represents the load voltage measurement errors. Each boxplot in the bottom of Figure 43 

represents the voltage drops over a given branch or transformer. The voltage drops over some 

lines are on the same order or smaller than the measurement error. Since the proposed parameter 

estimation utilizes the branch voltage drop as the linear regression response variable, it is not 

possible to estimate effectively impedance parameters for branches over which the voltage drop 

is less or equal than the voltage measurement error level. Therefore, it is imperative to have high 

quality voltage measurements. 

 

 

 
Figure 43. Load voltage measurement errors at error level 0.2% (top) compared to voltage drops 

over the 240V base secondary circuit transformers and lines (bottom) 
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sample lengths from 1 through 50 weeks with different voltage measurement error levels and 
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average absolute error or the estimated R and X can be brought down to around 6% and 9%, 

respectively by utilizing sufficiently large sample sizes. However, adding more samples does not 

completely remove the influence of measurement error. Therefore, it is necessary to have high-

quality (especially voltage) measurements in order to accurately estimate the parameters. 

 

 
Figure 44. Average absolute R (left) and X (right) estimation errors for 1-50 weeks of load data and 

0-0.5% of P, Q, and V measurement error, error magnitudes >10% are set to 10% 
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error of R and X at 2.05% (8.67%) and 2.73% (9.50%), respectively. The relative errors of the 

estimated Z and absolute errors of the estimated X/R-ratios are shown in Figure 46. Again, 

excluding parameters of L3-4 and L9-2, the mean (maximum) relative Z and absolute X/R-ratio 

errors were 1.10% (3.61%) and 0.08 (0.28), respectively. 

 

Measurement Error Level [%]

N
u
m

b
e
r 

o
f 
W

e
e
ks

 U
se

d
 f
o
r 

E
s
ti
m

a
tio

n

R [%]

 

 

0 0.1 0.2 0.3 0.4 0.5

5 

10

15

20

25

30

35

40

45

50

1

2

3

4

5

6

7

8

9

Measurement Error Level [%]

N
u
m

b
e

r 
o
f 

W
e

e
ks

 U
se

d
 f
o

r 
E

s
ti
m

a
tio

n

X [%]

 

 

0 0.1 0.2 0.3 0.4 0.5

5 

10

15

20

25

30

35

40

45

50

1

2

3

4

5

6

7

8

9



61 

 
Figure 45. Relative errors of estimated R and X with 1% P, 1% Q, and 0.2% V measurement error 

when the parameters are estimated with the adaptive approach 

 

 
Figure 46. Relative errors of estimated Z and X/R-ratio with 1% P, 1% Q, and 0.2% V measurement 

error when the parameters are estimated with the adaptive approach 
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and L9-2 have very low R-squared values, which indicates a low quality fit. However, there are 

other well-estimated parameters with similar R-squared values and thus, R-squared cannot be 

directly used to describe the quality of a regression model. Figure 47 also shows that the sum of 

squared errors of these two regression problems are not considerably higher and that the 

parameter p-values are significant. Finally, as Figure 48 and Figure 49 indicate, the regression 

problems that include L3-4 and L9-2 do not have particularly high or low means and/or standard 

deviations of the response and/or predictor variables. Potentially, other characteristics in the load 

data of L3-4 and L9-2 would explain the lower estimation quality of these parameters. To 

conclude, more work is needed to determine the approach to detect and fix parameter estimation 

regression problems with low quality. 

 

 
Figure 47. Sum of squared errors, R-squared values, R and X p-values with 1% P, 1% Q, and 0.2% 

V measurement error 
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Figure 48. Means and standard deviations of the response variables (voltage drops) 

 

 
Figure 49. Means and standard deviations of the predictor variables 𝑰𝑹 and 𝑰𝑿 

 

Figure 50 shows the absolute and relative errors of the simulated per-unit voltage drops from the 

transformer primary winding to the load buses. The errors are calculated between the voltages 

simulated with the true parameters and the voltages simulated with the estimated parameters. In 

both cases, the voltages were simulated with the true P and Q values. All the errors are so small 
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that in real circuits, they can be hard to distinguish from measurement noise and other modeling 

inconsistencies. 

 

It should be noted that since parameter estimation results are data-driven, different results are 

obtained with different characteristics of load data and measurement error. As shown in Section 

5.3, without measurement error, parameters can be estimated with a very small error especially if 

regression models with additional terms are used. The presented parameter estimation approach 

is optimized for the practical setting where the measurement error dictates the parameter 

estimation accuracy. 

 
Figure 50. Errors of simulated voltage drops from the service transformer primary to the load 

buses when the parameters are estimated with the adaptive approach 

7.2. Georgia Tech Feeder 

The proposed parameter estimation algorithm was utilized to calibrate the secondary circuit 

parameters of one of the Georgia Tech feeders. Since the true parameter values are unknown, the 

parameter estimation accuracy was measured with mean bias errors (MBE =
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of the voltage drops simulated with the basecase parameters and the estimated parameters. The 

results are shown in Figure 51. The parameter estimation very effectively reduced the bias of the 

voltage drop simulation error. 
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Figure 51. Mean bias errors of simulated voltage drops from the substation with basecase 

transformer parameters (top) and estimated transformer parameters (bottom) 

 

Typically distribution system secondary circuits are fed by a single service transformer whose 

upstream and downstream bus voltages are rarely measured. In order to estimate the transformer 

impedance, voltage estimates of both of the transformer buses are needed. The downstream bus 

voltages can be estimated from the secondary circuit measurements with the hierarchical radial 

circuit parameter estimation approach shown above. However, the same approach cannot be used 

to estimate the transformer upstream bus voltages. Instead, the transformer upstream bus 

voltages can be estimated from time series power flow analysis by assuming that the distribution 

system primary circuit is well-modeled and any secondary system impedance inaccuracies have 

only a small impact on the transformer medium-voltage side voltages. 

 

It is challenging to verify the Georgia Tech primary system model accuracy due to the absence of 

measurements between the loads in the secondary circuits and the substation. There is 

uncertainty with respect to the primary system underground cable capacitances and in some 

cases the exact primary system topology. Moreover, the Georgia Tech AMI historical database 

has errors, many of which have already been detected and removed but further undetected 

problems are likely to exist [33], [34]. 

 

Figure 52 shows the boxplots of the relative voltage simulation errors for all the 10 secondary 

circuit loads in the studied Georgia Tech feeder. The larger mean and range of errors are 

explained next. Meter 136E_ML1 records instantaneous measurements, which are subject to 

considerable variation in a given 15-min measurement time period. Since the other feeder 

measurements are 15-min averages, these instantaneous measurements do not synchronize well, 

so simulated voltages have more variation. Due to large research equipment in the building, 

meter B149E_MH2 has an abnormal load shape that is only at a few kW most of the time and 

occasionally jumps quickly up to 200-300kW for a while. Filtering out these jumps from the 

parameter estimation improves the estimated parameters and reduces the errors for test data 

periods without the jumps. However, voltage simulation errors during these jumps cannot be 

eliminated. Building B199E_MH1 has a lot of PV with negative power injections present during 

the daytimes. Parameter estimation effectively reduced the means and variations of the other 

loads. 
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Figure 52. Relative voltage drop simulation errors with the basecase transformer parameters (top) 

and estimated transformer parameters (bottom) 

 

b136e_mh1 b136e_ml1 b149e_mh1 b149e_mh2 b151e_mh1 b159e_mh1 b160e_m1h1 b160e_m1h2 b177e_mh1 b199e_mh1
-100

-50

0

50

100

Load

Mean Bias Errors with Original Parameters

[%
]

b136e_mh1 b136e_ml1 b149e_mh1 b149e_mh2 b151e_mh1 b159e_mh1 b160e_m1h1 b160e_m1h2 b177e_mh1 b199e_mh1
-100

-50

0

50

100

Load

Mean Bias Errors with Estimated Parameters

[%
]

b136e_mh1 b136e_ml1 b149e_mh1 b149e_mh2 b151e_mh1 b159e_mh1 b160e_m1h1 b160e_m1h2 b177e_mh1 b199e_mh1
-100

-50

0

50

100

Load

Mean Bias Errors with Original Parameters

[%
]

b136e_mh1 b136e_ml1 b149e_mh1 b149e_mh2 b151e_mh1 b159e_mh1 b160e_m1h1 b160e_m1h2 b177e_mh1 b199e_mh1
-100

-50

0

50

100

Load

Mean Bias Errors with Estimated Parameters

[%
]



67 

8. HANDLING METERS WITHOUT VOLTAGE MEASUREMENTS 
 

Smart meters and PV microinverters measure both voltages and currents to derive power 

measurements from them. Modern smart meters can allow firmware upgrades [49] to be able to 

transmit the voltage measurements to the utility database. However, older smart meters may not 

have either of these capabilities and thus, in practice some meters may provide only power (or 

current) measurements. This chapter presents a modified secondary circuit parameter estimation 

approach that can handle some meters that do not transmit voltage measurements. It should be 

noted that any meter without voltage measurements reduces the accuracy and observability of the 

(secondary circuit) parameter estimation and thus, it is desirable to have high-quality voltage 

measurements from all smart meters. 

 

The modified approach presented in this chapter relies on the assumptions listed in chapter 4 

except that all leaf nodes without voltage measurements must have current and power factor 

measurements. If a meter without voltage measurements has only power measurements, these 

power measurements must be converted to current measurements (𝐼𝑅 and 𝐼𝑋) by utilizing 

estimated (e.g. nominal or simulated) voltages. Once this has been done, the algorithm proceeds 

as follows to estimate the parameters of each secondary circuit: 

1. Remove the upstream branches of leaf nodes without voltage measurements (their 

parameters cannot be estimated). Add the currents of such leaf nodes to the currents of 

the immediate upstream nodes. Set the list of other branches as the set of active branches. 

2. While the set of active branches is not empty 

 If the list of active branches has only one branch, select the branch and go to 3. 

 If the list of active branches has a branch with both upstream and downstream 

voltage measurements, select the branch and go to 3. 

 If the list of active branches has a comprehensive (no other branches with the 

same upstream node) set of parallel branches that each have downstream voltage 

(and current) measurements, select the branches and go to 3. 

 If the list of active branches has a set of two or more parallel branches that each 

have downstream voltage (and current) measurements, select the branches and go 

to 3. 

 If the list of active branches has a branch with downstream voltage measurements, 

select the branch and go to 4. 

 If no suitable branch(es) found, return an error. 

3. Estimate the parameters of the selected branch(es) either with “single branch model” or 

“pairwise parallel branch approach” shown in section 4. Go to 5. 

4. Estimate the parameters of the selected branch by forming a regression problem between 

the branch downstream node and the closest upstream node with voltage measurements 

as shown in section 8.1. Go to 5. 

5. Remove the selected branches from the set of active branches, add the currents of each 

branch to the currents of the immediate upstream branch and go to 2. 
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8.1. Estimating Series Branch Impedances 

The regression problem for a set of N series branches can be formulated based on the voltage 

drop over the branches: 

 𝑉𝑈𝑝 − 𝑉𝐷𝑜𝑤𝑛 = ∑ (𝑅𝑖𝐼𝑅𝑖 + 𝑋𝑖𝐼𝑋𝑖)
𝑁
𝑖=1 , (19) 

where 𝑉𝑈𝑝 is the known voltage of the upstream node of the highest branch in the set and 𝑉𝐷𝑜𝑤𝑛 

is the known voltage of the downstream node of the lowest branch in the set. The current 

components of branch 𝑖, 𝐼𝑅𝑖 and 𝐼𝑋𝑖, can be calculated as a sum of the downstream branch 

currents of branch 𝑖. Consider 𝑇 synchronous measurement samples 𝑽𝑈𝑝, 𝑽𝐷𝑜𝑤𝑛, 𝑰𝑅𝑖, 𝑰𝑋𝑖 ∈

ℝ𝑇 , 𝑖 ∈ {1, … , 𝑁} and define the response vector 

 𝒚 = 𝑽𝑈𝑝 − 𝑽𝐷𝑜𝑤𝑛, (20) 

the measurement (design) matrix 

 𝓧 = [𝑰𝑅1, 𝑰𝑋1, 𝑰𝑅2, 𝑰𝑋2, … , 𝑰𝑅𝑁, 𝑰𝑋𝑁], (21) 

and the parameter vector 

 𝜷 = [𝑅1, 𝑋1, … , 𝑅𝑁 , 𝑋𝑁]𝑇 . (22) 

Then, the parameters 𝑅𝑖, 𝑋𝑖, 𝑖 ∈ {1, … , 𝑁} can be estimated from 

 𝒚 = 𝓧𝜷 + 𝝐 (23) 

with one of the approaches introduced in section 3.2. If the parameters of an upstream branch 

𝑖 ∈ {1, … , 𝑁} are known (or estimated previously), branch 𝑖 can be removed from the regression 

problem by doing the following steps. 

1) Remove Δ𝑽𝑖, the vector of voltage drops over branch 𝑖, from the response vector (20) 

 𝒚 = 𝑽𝑈𝑝 − 𝑽𝐷𝑜𝑤𝑛 − Δ𝑽𝑖. (24) 

2) Remove 𝑰𝑅𝑖 and 𝑰𝑋𝑖, the predictors of branch 𝑖, from the design matrix (21) 

 𝓧 = [𝑰𝑅1, 𝑰𝑋1, 𝑰𝑅2, 𝑰𝑋2, … , 𝑰𝑅(𝑖−1), 𝑰𝑋(𝑖−1), … , 𝑰𝑅(𝑖+1), 𝑰𝑋(𝑖+1), … , 𝑰𝑅𝑁, 𝑰𝑋𝑁]. (25) 

3) Remove 𝑅𝑖 and 𝑋𝑖, the coefficients of branch 𝑖, from the parameter vector (22) 

 𝜷 = [𝑅1, 𝑋1, … , 𝑅𝑖−1, 𝑋𝑖−1, 𝑅𝑖+1, 𝑋𝑖+1, … , 𝑅𝑁 , 𝑋𝑁]𝑇. (26) 

If the parameters of multiple upstream branches are known, steps 1) – 3) are repeated for each 

branch with known parameters. 

8.2. Results for the 66-Node Test Circuit 

First, the operation of the algorithm is illustrated with different meters without voltage 

measurements in secondary circuit 6 of the 66-node test circuit (Figure 5). Figure 53 shows both 

the true parameters and the estimated parameters when all loads have voltage measurements. 

Figure 54 shows the estimated parameters when load 6-1 has no voltage measurements. In this 

case, branch L6-1 parameters are not estimated (and thus, are not show in the figure), branch L6-

2 parameters are estimated with the approach described in section 8.1, and the rest of the 

parameters are estimated normally utilizing voltage measurements. Figure 55 shows the 
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estimated parameters when loads 6-1 and 6-4 have no voltage measurements. In this case, branch 

L6-1 and L6-4 impedances are not estimated (and thus, are not shown in the figure), branch L6-

2, L6-3 impedances are estimated with the approach from section 8.1, and the rest of the 

branches are estimated normally. Finally, Figure 56 shows the estimated parameters when loads 

6-1, 6-2, and 6-4 have no voltage measurements. In this case, branch L6_1, L6_2, L6_4, and 

L6_01 impedances are not estimated (and thus, not show in the figure), branch 6-3 impedance is 

estimated with the approach in section 8.1 and the rest of the parameters are estimated normally. 

 

 
Figure 53. Original secondary circuit 6: node name (black bold), node upstream branch name 
(bold blue), branch true impedance (blue), and branch estimated impedance (red) , branches 

whose parameters are not estimated are not shown 

 

 
Figure 54. Estimated secondary circuit 6 parameters when load 6-1 has no voltage measurements: 
node name (black bold), node upstream branch name (bold blue), branch true impedance (blue), 
and branch estimated impedance (red) , branches whose parameters are not estimated are not 

shown 

 

THV6

TLV6

6-01 6-02

6-1 6-2 6-3 6-4

L6-01 L6-02

L6-1 L6-2 L6-3 L6-4

T6

 0.0300 + j0.0300  0.0300 + j0.0300

 0.0300 + j0.0300  0.0300 + j0.0300  0.0300 + j0.0300  0.0300 + j0.0300

 0.0276 + j0.0599

 0.0302 + j0.0297  0.0302 + j0.0297

 0.0301 + j0.0299  0.0301 + j0.0299  0.0301 + j0.0299  0.0301 + j0.0299

 0.0281 + j0.0585

THV6

TLV6

6-01 6-02

6-2 6-3 6-4

L6-01 L6-02

L6-2 L6-3 L6-4

T6

 0.0300 + j0.0300  0.0300 + j0.0300

 0.0300 + j0.0300  0.0300 + j0.0300  0.0300 + j0.0300

 0.0276 + j0.0599

 0.0301 + j0.0297  0.0300 + j0.0297

 0.0298 + j0.0299  0.0301 + j0.0299  0.0301 + j0.0299

 0.0282 + j0.0585



70 

 
Figure 55. Estimated secondary circuit 6 parameters when loads 6-1 and 6-4 have no voltage 

measurements: node name (black bold), node upstream branch name (bold blue), branch true 
impedance (blue), and branch estimated impedance (red), branches whose parameters are not 

estimated are not shown 
 

 

 
Figure 56. Estimated secondary circuit 6 parameters when loads 6-1, 6-2, and 6-4 have no voltage 

measurements: node name (black bold), node upstream branch name (bold blue), branch true 
impedance (blue), and branch estimated impedance (red) , branches whose parameters are not 

estimated are not shown 

 

The modified algorithm was validated on the 66-node test circuit by first removing voltage 

measurements from a given number of randomly selected meters in each secondary circuit and 

then estimating the parameters. This was repeated for 50 times for each secondary circuit. All the 

meters were assumed to have current measurements, i.e., no conversion from powers to currents 

with estimated/simulated voltages was necessary. The parameters were estimated with a set of 

8760 samples of perfect measurements (no measurement error). Figure 57 and Figure 58 show 

the average (over the 50 repetitions) absolute relative errors of the estimated R and X, 

respectively. The more meters without voltage measurements a given secondary circuit has, the 

higher the errors of the estimated parameters become. In some secondary circuit topologies, the 

errors increase more than on others. This is clearly illustrated in Figure 59 and Figure 60 that 
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show how much the average (over the 50 repetitions) absolute errors of the estimated R and X 

increase as the number of meters with no voltage measurements increases. It is also interesting to 

observe that in some cases, e.g., branches “L5_2” and “T3”, the average parameter estimation 

error decreases when a meter is removed. This could potentially be explained by the particular 

load characteristics of the removed meter. 

 

 
Figure 57. The average errors of the estimated R parameters over 50 repetitions where at each 
repetition a given number of randomly selected meters had no voltage measurements. In white 

areas, the parameter was not estimated in any of the repetition. 

 

 
Figure 58. The average errors of the estimated X parameters over 50 repetitions where at each 
repetition a given number of randomly selected meters had no voltage measurements. In white 

areas, the parameter was not estimated in any of the repetition. 
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Figure 59. The impact of the number of meters with missing voltage measurements to the R 
estimation error (the difference of the results in Figure 57 compared to the case when all the 

meters have voltage measurements) 

 

 
Figure 60. The impact of the number of meters with missing voltage measurements to the X 

estimation error (the difference of the results in Figure 58 to the case when all the meters have 
voltage measurements) 
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9. CONCLUSION 
 

To analyze and coordinate distribution systems with rapidly increasing amount of PV, more 

accurate distribution system models are required, especially for the distribution system secondary 

circuits down to the point of common coupling for distributed PV. There is a growing need for 

automated procedures to calibrate the distribution system secondary circuit models that are 

typically modeled with a lower level of detail than the well-modeled medium-voltage systems. 

 

This report presents an accurate, flexible, and computationally efficient method to use 

measurement data to estimate secondary circuit series impedance parameters in existing utility 

feeder models. The parameter estimation method assumes well-modeled primary circuit models, 

known secondary circuit topology, and AMI active power and reactive power measurements at 

all the loads in the secondary circuit. The method also requires AMI voltage measurements at 

most of the loads in the secondary circuit but can handle some meters without voltage 

measurements. The method is based on the well-known linearized voltage drop approximation 

and linear regression. The algorithm accuracy is studied with respect to various circuit 

parameters and operation conditions, including a range of circuit impedances, load power factor, 

the presence of reverse power flows, power and voltage measurement error, and sample size. 

 

The performance of the developed method is demonstrated on a three-phase test circuit without 

and with power and voltage measurement error. The optimal regression model is shown to 

depend on the measurement noise and an optimal regression model selection is shown for the 

practical case with noisy measurement. The optimal regression model for the ideal case without 

measurement error estimates all the branch parameters with relative errors less than 1.5%. In the 

presence of 1% active power, 1% reactive power, and 0.2% voltage measurement error, the 

proposed optimal approach for noisy measurements estimates all the parameters with an average 

relative errors 2.46% and 3.11% for R and X, respectively. The average errors of the voltage 

drops over the secondary circuits, simulated with the estimated parameters, are all within 1% 

percent error of the actual voltage drops. These high levels of accuracy demonstrate the 

efficiency of the proposed methodology in improving secondary circuit models. The parameter 

estimation accuracy is shown to be much more sensitive to voltage measurement errors than 

power measurement errors, underlying the importance of having high-quality voltage 

measurement data. 

 

The algorithm performance is also demonstrated on one the Georgia Tech campus distribution 

system feeders with AMI data. In this feeder, the algorithm very effectively reduced the bias of 

the voltage drop simulation error. Challenges related to real feeder models and AMI data are 

discussed. 

 

In the future work, the proposed method is extended to single-phase secondary circuits and 

unknown secondary circuit topologies and applied on real utility feeder models. 
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