
PVLIB Python 2015

William F. Holmgren∗, Robert W. Andrews†, Antonio T. Lorenzo‡,
Joshua S. Stein§

∗Department of Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, United States
†Heliolytics, 483 Bay St. Toronto, ON, M5G2C9, Canada

‡College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, United States
§Sandia National Laboratories, Albuquerque, NM, 87185, USA

Abstract—We describe improvements to the open source
PVLIB-Python modeling package. PVLIB-Python provides most
of the functionality of its parent PVLIB-MATLAB package and
now follows standard Python design patterns and conventions,
has improved unit test coverage, and is installable. PVLIB-
Python is hosted on GitHub.com and co-developed by GitHub
contributors. We also describe a roadmap for the future of the
PVLIB-Python package.

Index Terms—PV modeling, software, data analysis, perfor-
mance modeling

I. INTRODUCTION

The PVLIB Toolbox is a well-established MATLAB library
for photovoltaic modeling and analysis [1]. It was originally
developed at Sandia National Laboratories and has been ex-
panded by contributions from members of the Photovoltaic
Performance and Modeling Collaboration (PVPMC). While
MATLAB remains a common choice in many public and
private laboratories, the popularity of Python has grown
tremendously in the last decade. Python is now the language
used in introductory programming courses at a number of
top universities [2], [3]. It is elegant, easy to read and write,
portable across platforms, free and open source, and it has
a large scientific computing community. With the appropri-
ate scientific packages installed (NumPy, SciPy, Matplotlib,
statsmodels, pandas), Python provides a powerful alternative
to MATLAB and R. The scientific Python stack also enables
the use of a single language for the entire data collection,
processing, and analysis workflow, which can result in faster
development with fewer bugs.

Andrews et. al. [4] introduced the PVLIB-Python toolbox
in 2014 and outlined its three main principles:

1) Take advantage of the Python programming language, to
ensure free access to academic and commercial users.

2) Designed for collaborative development, and backed by
a rigorous method to include the contributions of authors
and researchers into the package.

3) Backed by a full testing and validation suite to ensure
stability of the package and to allow for validation of
model results against real-world performance data.

Overall, the goal of this package is not to supersede other
established commercial and public PV modeling packages,
such as Helioscope, PVSyst, SAM, and PVWatts. Instead,

PVLIB-Python adds a flexible, accessible, and collaboratively-
developed analysis package which can be utilized to derive
deep insights about the performance of PV systems and the
tools used to model them. By providing a code-level and
modular approach to system modeling, users are able to model
and analyze each portion of the PV system performance chain,
and are able to utilize the significant data analysis capabilities
of Python to analyze large data sets. The PVLIB-Python source
code is hosted on GitHub [5]. The source code to generate the
figures in this manuscript and poster is also hosted on GitHub
[6].

The first PVLIB-Python implementation [7] succeeded in
providing nearly all of the PVLIB-MATLAB functionality
in Python. It also succeeded in establishing collaborative
development environment on GitHub. Over a dozen forks
(independent copies) of the project now exist on GitHub. Many
of these users have contributed substantial changes to the
source code, cataloged issues, or discussed ways of improving
the code through GitHub. Users do not need significant experi-
ence with Python to make significant contributions to PVLIB-
Python. In fact, making small contributions to PVLIB-Python
source code, unit tests, and documentation can be an effective
way for new users to learn how to use Python and GitHub.

II. GROWTH OF THE PVLIB-PYTHON PACKAGE

The initial release of the package provided a direct transla-
tion and adaptation of most of the PVLIB-MATLAB version of
the code. Though functional, this translation exposed a number
of problems for using PVLIB in a Python environment. We
focused on improving the following three issues that existed
in the initial release:

• The package did not conform to standard Python design
patterns and conventions.

• The package test coverage was poor.
• The package did not have an install script.
We summarize the largest changes and improvements rele-

vant to these issues below, but we encourage readers to visit
the PVLIB-Python GitHub issues webpage for comprehensive
discussions regarding these changes.

A. Python design patterns, conventions, and the Zen of Python

The original PVLIB-Python package implemented nearly
all of PVLIB-MATLAB in Python, but it did not generally



use idiomatic Python. Idiomatic Python is often referred to
as pythonic [8], or conforming to the Zen of Python [9].
These fanciful words may imply simply a matter of taste
or preference for how software should be written, but the
implications for the package are actually much larger. First,
we chose to implement PVLIB in the Python language for
reasons that centered on the fundamental nature of Python
and the associated scientific Python libraries, described above
and in [4]. It is reasonable for new users and developers
to expect a Python package to look and behave like other
Python packages, and for it to be written using the same design
patterns. Second, pythonic Python is usually simpler and uses
more of the language’s well-tested and built-in functionality.
This makes the code easier to understand and less likely to
contain hidden bugs. In order to address this, we made PVLIB-
Python more pythonic in the following ways.

1) Package structure: The original PVLIB-Python, as well
as the current PVLIB-MATLAB, contains all functions in files,
or modules, that are named the same as the function. This
pattern causes serious module import problems in Python, and
it neglects the advantages of grouping similar functions into a
single module for logical consistency. We now group functions
of a similar type into one module. For example, the TMY read-
ing functions pvl_readtmy2 and pvl_readtmy3 now
reside in a single module tmy. Next, we removed pvl_ from
all functions and modules – after all, they are all contained in
a packaged named pvlib. A TMY reading function then be-
comes pvlib.tmy.readtmy3. Similar changes have been
applied library-wide, yielding a more pythonic library structure
that improves readability and organization. Several additional
PVLIB-MATLAB features, such as single axis tracker models
(see Figure 1) were also ported to PVLIB-Python.

2) Pythonic modification of design patterns: Several design
patterns existed in the Python package which were hold-
overs from PVLIB-MATLAB. For example, PVLIB-MATLAB
uses a struct to represent a location. Python does not have
a C-like struct, but the initial PVLIB-Python attempted to
keep the same pattern by creating a struct-like object. By
replacing the awkward Python version of a struct with a
simple pvlib.location.Location class we obtained
more readable and more functional code. Objects of this
Location class have added functionality such as more
flexible constructors, better timezone handling, and nicer string
representations. Most importantly, the Location class can
be extended by users for their own purposes. For exam-
ple, a user may define her own SolarPlant class that
inherits from the Location class. SolarPlant objects
could then interact with the rest of PVLIB in the same ways
as Location objects, but also have additional user-defined
attributes and functionality. Additional changes include using
making extensive use of NaN or inf values instead of setting
values to 0, and applying PEP8 style and naming conventions
[10] to some of the code. Furthermore, most automatic input
variable checking on design functions was removed as it is
largely unnecessary in a Python environment and increased
the complexity of the code.

00:00:00

03:00:00

06:00:00

09:00:00
12:00:00

15:00:00

18:00:00

21:00:00
00:00:00

−100

−50

0

50

100

A
ng

le
 (d

eg
re

es
)

Single Axis Tracker Simulated Angles

aoi
surface_azimuth
surface_tilt
tracker_theta

00:00:00

03:00:00

06:00:00

09:00:00
12:00:00

15:00:00

18:00:00

21:00:00
00:00:00

0

200

400

600

800

1000

1200

Irr
ad

ia
nc

e 
(W

 m
^-

2)

Single Axis Tracker Simulated POA Irradiance
E
Eb
Ediff

Fig. 1. PVLIB-Python simulation of a single axis tracker, with backtracking,
located near Albuquerque, NM, for June 1, 2015. The simulation outputs
include (top) the angle of incidence (blue), panel surface azimuth (green),
panel surface tilt (red), and angle of rotation about the tracking axis (purple)
and (bottom) total plane of array irradiance (blue), beam component of plane
of array irradiance (green), and diffuse plane of array irradiance (red). This
example simulation used the Ineichen model to generate clear sky DNI,
GHI, and DHI, the Hay-Davies model to generate the diffuse plane of array
irradiance, and an isotropic ground diffuse model with an albedo of 0.25. This
example may be compared to a similar simulation in the PVLIB-MATLAB
documentation.

3) Logging and debugging: It is standard Python practice
to use Python’s built-in logging capabilities instead of print
statements, so we replaced print statements with logging calls.
We are also now relying on built-in Python exceptions to
alert the user to problems. Using Python exceptions makes
the PVLIB-Python library easier to integrate into a user’s own
programs.

B. Accessibility for MATLAB users

Rewriting the code to make it more pythonic leaves us
with a significant problem: the package becomes less familiar
to PVLIB-MATLAB users. We have attempted to lessen this
problem in several ways. First, we have provided extensive
documentation, discussed more below, in the form of web-
pages and IPython notebooks that demonstrate where to find
key functionality, how to tie together different components,



00:
00:

00

03:
00:

00

06:
00:

00

09:
00:

00
12:

00:
00

15:
00:

00

18:
00:

00

21:
00:

00
00:

00:
00

0

1

2

3

4

5

6

C
ur
re
nt
 (A

)
Isc
Imp
Ix
Ixx

00:
00:

00

03:
00:

00

06:
00:

00

09:
00:

00
12:

00:
00

15:
00:

00

18:
00:

00

21:
00:

00
00:

00:
00

0

10

20

30

40

50

60

Vo
lta
ge

 (V
)

Voc
Vmp

00:
00:

00

03:
00:

00

06:
00:

00

09:
00:

00
12:

00:
00

15:
00:

00

18:
00:

00

21:
00:

00
00:

00:
00

0

50

100

150

200

P
ow

er
 (W

)

Pmp

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Effective Irradiance

0

1

2

3

4

5

6

C
ur
re
nt
 (A

)

Isc
Imp
Ix
Ixx

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Effective Irradiance

0

10

20

30

40

50

60

Vo
lta
ge

 (V
)

Voc
Vmp

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Effective Irradiance

0

50

100

150

200

P
ow

er
 (W

)

Pmp

Fig. 2. Simulation of a fixed-tilt PV system on April 1, 2015, in Tucson, AZ, using PVLIB-Python’s implementation of the Sandia Array Performance Model.
The top row of subfigures shows currents, voltages, and maximum power as a function of time of day, while the bottom row shows the same as a function
of effective irradiance. PVLIB-Python was used to load the Sandia Module Database from NREL’s website, calculate solar position, clear sky data, airmass,
cell temperature, and module temperature, and finally run the Sandia Array Performance Model in 9 lines of code. Detailed simulation parameters may be
found online [6].

and how to write good Python in the context of problems that
PVLIB-MATLAB users are familiar with. Second, wildcard
import statements can be used to put the common PVLIB-
MATLAB functions in the namespace of the Python script.
For example, the TMY reading functions can be imported
using from pvlib.tmy import *. The PVLIB-Python
GitHub community has discussed adding the ability to import
all of the frequently used top-level functions using a command
such as from pvlib.api import *. Wildcard imports
can sometimes lead to namespace problems and are often
avoided in Python, but this functionality can provide PVLIB-
MATLAB users with a more familiar interface while gradually
becoming accustomed to Python design patterns.

C. Testing and continuous integration
Andrews et. al. described the need for both functional (does

the code return a value or crash) and physical (does the code
return the correct value) tests of the PVLIB code [4]. These
tests are often called unit tests, in reference to the fact that
there is ideally one test for each unit of code. Here, a unit of
code is typically a function, or a function called with a specific
set of parameters. PVLIB-Python now uses the nose package
[11] to make writing tests faster and easier. This package has

been used to increase the testing coverage of the code to above
90%.

Next, we adopted a continuous integration service, TravisCI,
to automatically test the code every time that submits a pull
request to merge their changes into another repository. This
helps to ensure that a contributor’s changes to one part of
the library does not inadvertently break another part of the
library. A comprehensive test suite coupled with continuous
integration services also makes it relatively easy to test a
library against many permutations of user environments. As
of June 1, 2015, we automatically test the PVLIB-Python
package against Python versions 2.7 through 3.4, and pandas
versions 0.13.1 through 0.16.1.

Writing new tests is a great way for new users to contribute
to PVLIB-Python. We particularly need physical tests, ideally
benchmarked against other PV modeling programs.

D. Installation

Most popular Python packages use one of several tools to
enable users to install the package into their Python envi-
ronment. Once installed, a Python package can be accessed
regardless of the directory in which the user started the Python
interpreter. The original PVLIB-Python did not contain a



Fig. 3. Screenshot of PVLIB-Python documentation homepage hosted at
http://pvlib-python.readthedocs.org.

usable installation script, which made using it and developing
it more challenging. We wrote a setup.py script to enable
PVLIB-Python to be installed and to be developed more effec-
tively. We also added PVLIB-Python to the Python Package
Index (PyPI), the most common resource for installing Python
packages [12]. PVLIB-Python can now be installed with a
simple pip install pvlib-python command. Future
versions of PVLIB-Python will be installable using the conda
package manager.

E. Documentation

Good documentation is essential to the success of any
software. We documented PVLIB-Python in two ways. First,
we created html and pdf documentation of the Python modules
and functions. Most of this documentation is an edited version
of the PVLIB-MATLAB documentation. We also documented
the major differences between the Python and MATLAB
projects. PVLIB-Python uses the standard Python tools sphinx
and numpydoc to build html and pdf documentation from
function and module docstrings. We use readthedocs.org to
automatically build new versions of the documentation every
time a change is made to the source code in the GitHub
repository. Figure 3 shows a screenshot of the documentation
homepage. The second form of documentation is a collection
of IPython notebooks. IPython notebooks provide an informa-
tive combination of explanatory text and inline, executable
code. These notebooks can be viewed and downloaded at
the GitHub project page or using the nbviewer.org tool. We
strongly encourage the community to contribute to both forms
of the PVLIB-Python documentation.

III. ROADMAP

We propose one possible short-term roadmap for PVLIB-
Python, and encourage the community suggest improvements.
We hope that PVLIB-Python administrative duties will rotate
through the community on an annual to biannual basis.

1) Initial PVLIB-Python implementation released on
GitHub under Sandia organization (completed in June,
2014) [7].

2) Establish a new GitHub organization, pvlib, to collab-
oratively administer the official PVLIB-Python project
(completed February, 2015) [5].

3) Put documentation on readthedocs.org [13] and use
TravisCI (completed February, 2015).

4) First PVLIB-Python release on PyPI [12] (completed
April, 2015).

5) Establish PVLIB-Python governance rules. Scientific
Python packages, in particular IPython IPEP 29 [14],
may be a good resource.

6) Bring PVLIB-Python up to date with PVLIB-MATLAB
1.2.

7) Reach 100% functional test coverage.
8) Release new version.
9) Develop and implement common physical tests for

PVLIB-Python and PVLIB-MATLAB.
10) Encourage users to contribute new models, improve

existing model implementations, testing, and documen-
tation.

11) Release new version.
12) Rotate PVLIB-Python administrative duties.

IV. USE CASES

We intend to establish a GitHub wiki to catalog PVLIB-
Python use cases. Such a wiki may be modeled on the
IPython project’s A gallery of interesting IPython Notebooks
and Projects using IPython [15].

V. CONCLUSION

We described significant improvements to the PVLIB-
Python package between the period June 2014 and May 2015
that make the library easier to use, easier to maintain, better
tested, and better documented. Much more work remains, and
we encourage readers to visit the GitHub project development
website [5].

ACKNOWLEDGMENT

The authors gratefully acknowledge Sandia National Lab-
oratories for the initial development of PVLIB-MATLAB
and PVLIB-Python and the ongoing contributions of many
others to the project. A list of PVLIB-Python contributors
may be found on the GitHub repository [5] and in the
online documentation [13]. Sandia National Laboratories is
a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000. WFH thanks the Department of Energy (DOE)
Office of Energy Efficiency and Renewable Energy (EERE)
Postdoctoral Research Award for support. ATL thanks the
University of Arizona Renewable Energy Network for support.



REFERENCES

[1] J. S. Stein, “The photovoltaic performance modeling collaborative
(pvpmc),” in Photovoltaic Specialists Conference, 2012.

[2] F. Pérez, B. E. Granger, and J. D. Hunter, “Python: An ecosystem for
scientific computing,” Computing in Science & Engineering, vol. 13,
no. 2, pp. 13–21, 2011.

[3] P. Guo. Python is now the most popular introductory teaching language
at top u.s. universities. [Online]. Available: http://goo.gl/2wxOk6

[4] R. W. Andrews, J. S. Stein, C. Hansen, and D. Riley, “Introduction to the
open source pv lib for python photovoltaic system modelling package,”
in 40th IEEE Photovoltaic Specialist Conference, 2014.

[5] W. F. Holmgren, B. Mueller, R. W. Andrews, and GitHub. pvlib/pvlib-
python. [Online]. Available: https://github.com/pvlib/pvlib-python

[6] W. F. Holmgren, R. W. Andrews, A. T. Lorenzo, and J. S. Stein.
pvlib/pvsc2015. [Online]. Available: https://github.com/pvlib/pvsc2015

[7] R. W. Andrews and GitHub. Sandia-labs/pvlib python. [Online].
Available: https://github.com/Sandia-Labs/PVLIB Python

[8] M. Faassen. What is pythonic? [Online]. Available: http://blog.startifact.
com/posts/older/what-is-pythonic.html

[9] T. Peters. Pep 20 – the zen of python. [Online]. Available:
https://www.python.org/dev/peps/pep-0020/

[10] G. van Rossum and N. Coghlan. Pep 8 – style guide for python code.
[Online]. Available: https://www.python.org/dev/peps/pep-0008/

[11] nose. [Online]. Available: https://nose.readthedocs.org/en/latest/
[12] W. F. Holmgren, B. Mueller, R. W. Andrews, and GitHub. PyPI/pvlib-

python. [Online]. Available: https://pypi.python.org/pypi/pvlib
[13] ——. pvlib-python documentation. [Online]. Available: http:

//pvlib-python.readthedocs.org
[14] IPython. Ipep 29: Project governance. [Online]. Available: https:

//github.com/ipython/ipython/wiki/IPEP-29%3A-Project-Governance
[15] IPython. A gallery of interesting IPython Notebooks and Projects using

IPython. [Online]. Available: https://github.com/ipython/ipython/wiki/

http://goo.gl/2wxOk6
https://github.com/pvlib/pvlib-python
https://github.com/pvlib/pvsc2015
https://github.com/Sandia-Labs/PVLIB_Python
http://blog.startifact.com/posts/older/what-is-pythonic.html
http://blog.startifact.com/posts/older/what-is-pythonic.html
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0008/
https://nose.readthedocs.org/en/latest/
https://pypi.python.org/pypi/pvlib
http://pvlib-python.readthedocs.org
http://pvlib-python.readthedocs.org
https://github.com/ipython/ipython/wiki/IPEP-29%3A-Project-Governance
https://github.com/ipython/ipython/wiki/IPEP-29%3A-Project-Governance
https://github.com/ipython/ipython/wiki/

	Introduction
	Growth of the PVLIB-Python package
	Python design patterns, conventions, and the Zen of Python
	Package structure
	Pythonic modification of design patterns
	Logging and debugging

	Accessibility for MATLAB users
	Testing and continuous integration
	Installation
	Documentation

	Roadmap
	Use cases
	Conclusion
	References

