

### Evaluation of Irradiance Decomposition and Transposition Models at Locations Across the United States

Matthew Lave, Cliff Hansen, Andrew Pohl (Sandia) Billy Hayes (First Solar) SAND2014-15017 PE PVSC 40, Denver, CO, 6/9/2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-15017PE

### Summary

- Estimations of POA irradiance are evaluated for tilt angles/orientations that are relevant to fixed tilt PV systems covering different climates in North America.
- Estimating plane of array (POA) irradiance often requires a sequence of models:
  - Decomposition: GHI to direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI)
  - Transposition: GHI, DNI and DHI to total irradiance in POA
- Sandia and First Solar evaluated numerous models, individually and in combination, to develop an understanding of model accuracies and general shortcomings.



## The problem

- The number of choices for transposition and decomposition models generates confusion and introduces risk in deployment of PV systems.
- For example, PVsyst provides two options which provide different estimates of POA irradiance (and consequently different estimates of AC energy)



# **Differences in energy estimates and associated risks**

- The modeling options available in PVsyst can produce energy estimates that are upwards of 1 % different on an annual basis.
- Depending on which estimate is more accurate the risk can be borne by either stakeholder:

Annual difference between PVsyst outputs for different transposition model selections



| Stakeholder           | Risk of underestimate                                                                       | Risk of overestimate                                                        |                                           |
|-----------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|
| Developer and/or EPC  | Lose bid or<br>undercapitalize on sale.                                                     | Fail performance<br>guarantees.                                             | Transposition risk<br>is transferred if a |
| Owner and/or Financer | May not be able to<br>capitalize on additional<br>energy generation<br>(contract specific). | Financial return<br>adversely affected.<br>(Bear risk if a PR<br>guarantee) | PR guarantee                              |

Generic system design applied for all simulations: 1.25 DC/AC; 0.56 GCR; Fixed 25° Tilt; 0° Azimuth

4

# **Modeling Process and Models Considered**



### Models in red denote options in PVSyst. 5

# **Diffuse Decomposition Models**

| Model               | Input variables          |
|---------------------|--------------------------|
| Orgill and Hollands | Kt, GHI                  |
| Erbs                | Kt, GHI                  |
| Boland              | Kt, GHI                  |
| Reindl 1            | Kt, GHI                  |
| Reindl 1 adj        | Kt, GHI                  |
| DISC                | Kt, GHI, SunEl           |
| DIRINT              | Kt, GHI, SunEl           |
| Reindl 2            | Kt, GHI, SunEl           |
| Reindl 2 adj        | Kt, GHI, SunEl           |
| Reindl 3            | Kt, GHI, SunEl, AmbT, RH |
| Reindl 3 adj        | Kt, GHI, SunEl, AmbT, RH |
| Posadillo           | Kt, GHI, SunEl, MF       |

# **Transposition Models**

| Model          | Input variables                                |
|----------------|------------------------------------------------|
| Isotropic      | DHI, SurfTilt                                  |
| Sandia         | DHI, SurfTilt, GHI, SunZen                     |
| Hay and Davies | DNI, DHI, HExtra, SunZen,<br>SurfTilt, AOI     |
| Perez          | DNI, DHI, HExtra, SunZen,<br>SurfTilt, AOI, AM |

All models of either type are:

- 1. (stationary) empirical (piecewise) correlations;
- 2. between measured DHI/DNI or POA and input variables;
- 3. using some historical hourly data set.

Several previous evaluations have found that models perform similarly at shorter time intervals.

# **Data Used in This Evaluation**

- Twelve locations representing a range of climates
- GHI, POA for a southward tilted instrument
  - CMP-11, CM22, Eppley PSP, some Licor-200
  - Multiple instruments at several locations
  - DHI (RSR) at several locations (single instrument)



| Station | Location                                                                                          | Elevation [m] | Climate Zone                                     | Measured Data | Time Period      | SurfTilt | SurfAz |
|---------|---------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------|---------------|------------------|----------|--------|
| 1       | Southeast CA                                                                                      | 120           | Arid Desert Hot (BWh)                            | GHI, POA      | 12/2009 - 8/2013 | 25°      | 180°   |
| 2       | Northeast NM                                                                                      | 100           | Arid Steppe Cold (BSk)                           | GHI, POA      | 12/2010 - 8/2013 | 25°      | 180°   |
| 3       | East MI                                                                                           | 188           | Snow; Fully humid; Warm<br>summer (Dfb)          | GHI, DHI, POA | 2/2012 - 7/2013  | 25°      | 180°   |
| 4       | East MI                                                                                           | 181           | Dfb                                              | GHI, DHI, POA | 2/2012 - 7/2013  | 25°      | 180°   |
| 5       | East MI                                                                                           | 193           | Dfb                                              | GHI, POA      | 10/2010 - 9/2013 | 25°      | 180°   |
| 6       | Southern NV                                                                                       | 572           | BWh                                              | GHI, POA      | 1/2011 - 12/2012 | 25°      | 180°   |
| 7       | Southeast AL                                                                                      | 97            | Warm temperate; Fully<br>humid; Hot summer (Cfa) | GHI, POA      | 8/2013 - 11/2013 | 26°      | 180°   |
| 8       | Central AL                                                                                        | 226           | Cfa                                              | GHI, POA      | 7/2013 - 11/2013 | 40°      | 180°   |
| 9       | Coastal MS                                                                                        | 6             | Cfa                                              | GHI, POA      | 2/2013 - 11/2013 | 15°      | 180°   |
| 10      | Central CO                                                                                        | 1829          | BSk                                              | GHI, DHI, POA | 1/2013 -12/2013  | 40°      | 180°   |
| 11      | Central CA                                                                                        | 200           | Warm temperate; dry, hot<br>summer (CSa)         | GHI, DHI      | 1/2013 -12/2013  | N/A      | N/A    |
| 12      | Central NM                                                                                        | 1657          | BSk                                              | GHI, GHI, POA | 1/2011 – 12/2011 | 35°      | 180°   |
|         | Stations in red allowed for independent testing of diffuse decomposition and transposition models |               |                                                  |               |                  | modole   |        |

Stations in red allowed for independent testing of diffuse decomposition and transposition models.





# **Diffuse Decompositions**

© Copyright 2013, First Solar, Inc.

# **Decomposition Models: How they work**



 measured diffuse fraction versus clearness index



- "simple" decomposition models
  - diffuse fraction a function of clearness index



- "complex" decomposition models
  - add other variables attempting to better model variation in diffuse fraction



9

# **Findings: Decomposition Models**

- Examined hourly data
- Two annual difference metrics (compare modeled vs. measured) :
  - RMSD : relates to hourly deviation
  - MBD : relates to annual energy
- DIRINT had lowest RMSD and MBD at all locations, but
- Not significantly less than other models
  - Simple models had similar performance
- Deviation in decomposition model depends on location



### **Breaking Down the Differences: Decomposition RMSDs**

- For simple models (e.g., Erbs), any point above model curve means DHI was underestimated; any point below means DHI was overestimated.
  - RMSD describes spread of data around the model curve
- DIRINT is a slight improvement over Erbs
  - Lower RMSD, but still shows similar patterns (e.g., gradient from bottom left to top right).



## **Breaking Down the Differences: Decomposition MBDs**

- Climate Plays an important role in annual errors (MBDs)
  - East MI: cloudy days are common
    - more points are above the Erbs model, leading Erbs to have a negative MBD
  - Central NM: clear days are common
    - Clustering of clear-sky values (kt=0.8, DF=0.1) below Erbs model that contribute to positive MBD







# **Transposition Models using measured DHI**

© Copyright 2013, First Solar, Inc.

# GHI +DHI -> POA

- POA has three components:  $POA = POA_{direct} + POA_{diff, refl} + POA_{diff, sky}$ 
  - POA<sub>direct</sub> a function of GHI, DHI, and angle of incidence
    Same for each model
  - POA<sub>diff, refl</sub> a function of GHI, tilt, and ground albedo
    - All models except for Sandia use albedo = 0.2
    - Sandia model uses empirical albedo derived for central NM
  - POA<sub>diff, sky</sub> varies from model to model
    - Isotropic, Sandia: sky diffuse only function of amount of sky seen
    - Hay/Davies, Perez: more diffuse irradiance in circumsolar region

# **Findings: Transposition Models**

- Hay/Davies and Perez show lower RMSD than other models; similar to each other.
- Systematic difference in MAD: Perez > Hay/Davies
  - E.g., Hay/Davies MBD -1% at Stn. 3, while Perez +1%
- Little dependence on location Except for Sandia model, which was calibrated at Stn. 12



# Breaking Down the Differences: Transposition Models in Circumsolar Region

- Isotropic model has large negative errors during clear-sky conditions (kt≈0.7) and low angles of incidence (AOI<40°), since it doesn't account for additional diffuse in the circumsolar region.
- Sandia model has similar behavior, but generally more positive values due tc enhanced albedo.
- Hay/Davies and Perez also have negative values in clear sky, low AOI conditions, but effect is smaller.



# Sandia



### Perez



Colors and numbers in plots indicated contribution to MBD; if all boxes were summed, the result would be the rMBD.





# Combined Models: Transposition Models with Diffuse Models

© Copyright 2013, First Solar, Inc.

# **Findings: Combined Models**

- Focused combined model evaluation on 2 decomposition and 2 transposition models
  - Decomposition: DIRINT (lowest deviation) and Erbs (default in PVsyst)
  - Transposition: Hay/Davies and Perez (best performing and both options in PVSyst)
- Combined model POA deviation is NOT the sum of deviation from individual models
  - Positive errors in DHI from decomposition models lead to negative errors in DNI
    - This may lead to underestimating POA
    - But this can also be offset by positive errors in the transposition models
- RMSD depends more on location than model combination



# Modeled vs. Measured DHI

- Combined models tend to have higher POA estimates than transposition models with measured DHI
  - Large negative errors in decomposition models significantly increased MBD / POA annual energy
  - Small to moderate positive errors in decomposition models had little effect on MBD / POA annual energy rMBE in POA estimates



#### rMBE in DHI estimates

|         | Erbs  | DIRINT |
|---------|-------|--------|
| Stn. 3  | -4.3% | -4.2%  |
| Stn. 4  | -5.0% | -4.7%  |
| Stn. 10 | 0.7%  | 0.4%   |
| Stn. 12 | 2.4%  | 0.6%   |

# **Addressing uncertainty**

Erbs / Hay Davies

Erbs / Perez **DIRINT / Hay Davies** 

Fast M (Str. 3)

DIRINT / Perez

Fishm(Str. A)

Southwy Str. 6)

tist M (Str. 6)

5

rMBD [%]

-3

-4

-5 L

Hotth MM Str. 2

- Biases can be present in measurements, • making it challenging to determine which model had the smallest annual bias error.
- Multiple sensors can be used to reduce the • effect of measurement bias.



# **Distributions of Discrepancies**

- Distributions of annual relative mean bias differences (discrepancy) were computed for all combinations of models.
- Results highlight a +/- 1% spread in discrepancy which represents the effect of sensor biases (in both GHI and POA).
- Bias discrepancies suggest that the Hay transposition model has a lower relative error compared to Perez when using modeled DHI as input.



# **Findings/Summary**

- Diffuse decomposition model performance varies based on climate
  - In predominantly clear or cloudy climates, models may over or under estimate the amount of diffuse
  - Annual errors range from rMBD of ~-10% to +10% (of GHI) at locations studied.
  - Hourly errors in DHI are large (>10% rRMSD) at all locations
- Transposition model performance does not seem to vary much with climate
  - Transposition model rMBD ~-4% (isotropic) to ~+1% (Perez)
  - rRMSD (% of POA) <10%; smaller than decomposition model rRMSDs</li>
- Combined models typically overestimated POA
  - Most sever for Perez transposition model where POA was already high
  - Hay/Davies transposition + modeled DHI found to have rMBD closer to zero than Perez transposition

### **Further Work Needed**

- Improve decomposition and transposition models
  - Decomposition models which account for local climate (amount of clear-sky hours)
  - Transposition models which perform better during clear-skies and low AOIs
  - Combined models with low RMSD and MBDs.
- Evaluate transposition models for tracking systems (which experience more instances of low AOI).
- Validation at more locations to further derive the impact of climate, AOI, tilt angle, etc.
- Determine impact of high DC/AC ratios. Do clear-sky errors become less important due to clipping?