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Preliminary investigations into the design of a pilot plant to analyse the
suitability of sealing systems based on rock salt bricks

Considerations for the Use of
Quarried Salt Blocks in Seal Components at the WIPP

Topical Report RS1-0340
Summary:

During the preparation of this document, a
conclusion was reached that quarried block
seal is feasible, but probably only if mortared
. interfaces between blocks are used.
(— because of surface mismatchs between
single blocks)

Leo L. Van Sambeek

Qctober 1988

Before a decision can be rendered on the
efficacy of quarried block seals, either with or
without mortar, additionally research is
needed.

@ RE/SPEC Inc.

apl. Prof. Dr.-Ing. habil. U. Dusterloh
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The main advantage of a sealing system based on rock salt bricks in
comparison to a sealing system based on crushed salt is given by the

initial porosity. .

intial porosity
D =~ 40%

apl. Prof. Dr.-Ing. habil. U. Dusterloh
Chair for Waste Disposal Technologies and Geomechanics MECHANICAL BEHAVIOR of SALT VIII - May 26 - 2015
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Investigations into the permeability of a linked system made of
rock salt with mortar of chrushed salt
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apl. Prof. Dr.-Ing. habil. U. Dusterloh
Chair for Waste Disposal Technologies and Geomechanics MECHANICAL BEHAVIOR of SALT VIII - May 26 - 2015





ms TU Clausthal

lab tests to measure the permeability of the linked system
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lab tests to measure the permeability of the linked system
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lab tests to measure the permeability of the linked system
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lab tests to measure the permeability of the linked system
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Intermediate results: regarding porosity / permeability of a linked
system based on rock salt bricks with joint filling by crushed salt

(1) initial porosity is significantly less than that of crushed salt

(2) clear indications regarding a decreasing initial porosity with time
caused by stress and moisture (— healing of pathways)

(3) a linked system based on rock salt bricks with joint filling of crushed salt
do have the ability to create a long term sealing element made of nativ
material (— healing of geological barrier)

\

The idea of using rock salt bricks to create a long term sealing element for the first

time analysed by RESPEC was born again.

A preliminary design study funded by BMWI1 was started. B | R
main WP:

further lab investigations to verify in more detail the observed reduction in permeability
preliminary investigations into sample preparation techniques

construction, design and cost estimation of a pilot plant

apl. Prof. Dr.-Ing. habil. U. Dusterloh
Chair for Waste Disposal Technologies and Geomechanics MECHANICAL BEHAVIOR of SALT VIII - May 26 - 2015
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further laboratory investigations to analyse the sealing capacity using

hollow cylinder of rock salt filled with half-shell pieces of rock salt
connected by a paste of slightly wet crushed salt

hollow cylinders
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further laboratory investigations to analyse the sealing capacity using
hollow cylinders

after loading b

tomography pictures

apl. Prof. Dr.-Ing. habil. U. Dusterloh
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further laboratory investigations to analyse the sealing capacity using
hollow cylinders

4- — 900

35 ——1-15MPa 7 800
rior loadin 2 T 700~
p : g g/ 3 NS~ A 600 E
v 25 < 15MPa 1 500 E
D 2 f— 400 o
n =
15 +300 &
0 ; s +200 2
c 1 ©
o | +100 =

-100

6,7 76,75 76,8 76,85 76,9
time (d)
. —pflp — pfls —q
after loading -
g no significant reduction in gas

permeability in case of isotropic
loading / no final compaction of

_ crushed salt
tomography pictures

apl. Prof. Dr.-Ing. habil. U. Dusterloh
Chair for Waste Disposal Technologies and Geomechanics MECHANICAL BEHAVIOR of SALT VIII - May 26 - 2015 12





TU Clausthal

further laboratory investigations to analyse the sealing capacity using
hollow cylinders - sample preparation techniques

Merely a milling machine is able to create
3D pieces of rock salt with different surface
curvatures. A combination of lathe and saw
Is not useful.

20 rock salt bricks of different shape /
avoiding continuous joints parallel to fluid
flow / connection by humidification

weekly to monthly flow with dry N, leads to
a dehydration of joints !
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design of a pilot plant

i

,45.,

Diameter: 1.4m
Height: 3.5m
Mass: 18t

Fo 11MN
Cs. 25MPa

2-phase flow measurement system
dilatancy measurement system

sample size: d = 75cm h = 150cm

oral acceptance by PTKA to start the
research project in Aug./Sep. 2015!

Funded by Managed by

* Federal Ministry
for Economic Affairs

and Energy

PTKA

| Project Management Agency Karlsruhe

. Karlsruhe Institute of Technology

Thanks for funding a big challenge
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Role of Reconsolidation =

Characteristics of the geologic formation itself are the most
important to accomplish isolation of nuclear waste

Salt formations are nearly ideal for permanent disposal
because they are impermeable, deform plastically for the
most part, and can be engineered to satisfy an array of
disposal concepts

Achievement of high-performance engineered barriers
assumes a role as important as the formation

The license to open a repository will depend on our
demonstrated ability to close it






Background—Role of
Reconsolidated Salt

Act as a long-term barrier against inflowing brine or water
and eliminate release pathways via drifts and shafts

Conduct heat generated by radioactive decay from the
waste to the host rock

Stabilize repository excavations

Provide low permeability and/or diffusivity and/or long-
term retardation

Key questions involve how, when, and to what degree
properties of reconsolidating granular salt approach or
attain those of the native salt formation






Reconsolidating Salt Forensics @

N s Porosity reduction due to break
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BAMBUS reconsolidated
backfill 25% porosity; brittle
cleavage translational sliding

Backfill slurry. Cubic habit
with pulverization and
pressure solution

High temperature, low
porosity sutured grains,
extensive plasticity
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Plasticity-Coupled Pressure Solution

SEM Micrograph

Consolidation Around
Test Heater

After Spiers and Brzesowsky 1993






Case Studies ) e,
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Experimental Test Arrangements
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Experimental Procedures
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Additives and Consolidation DR
Behavior
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Permeability-Porosity Relations @&
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Permeability-Porosity Data i
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Summary of Analogues

Headwork with jack-hammer in old-drifts
in the salt mine Dilirnberg (A)

A) Chevron-structures due
to grain grow by
precipitation

B) B) 120° polygon-
structures developed by
recrystallisation

a)

T | d)
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Volumetric Strain and Brine Flow
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Perceptions-Future Work W=

What final porosity of crushed salt is necessary to achieve
an efficient seal and when can it be reached?

Capability of additives such as moisture and clay can be
optimized for construction and attainment of sealing
properties

The nature of testing fluids (brine or gas) and the resultant
permeability/porosity relationships warrant further
examination

Numerical modeling provides capabilities but lacks low
porosity verification

Further analogue experience from underground sources is
imperative

16






Field-scale Test ) .

In Situ Consolidation
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Hansen and Popp 2015

= Analysis of natural
analogues

= Development of
constitutive laws

compaction tests

¥ BAMBUS I —
Revisitation after
15y

May 5,2015

Open tasks / key activities

= Systematic selection and
study of analogues

= Improvement, calibration
and benchmarking of
existing laws

2> BGR develops & new
experimental setup for
long-term compaction test
(up to 10y) on crushed salt

=> In the framework of Asse
site investigations:
Characterissation ofthe
crushed =it consolidstion
state 7
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Interaction between salt concrete sealing structures
and rock salt

Univ.-Prof. Dr.-Ing. J. Stahlmann, Dipl.-Ing. C. Missal, Dipl.-Ing. A. Gahrken
Institute for Soil Mechanics and Foundation Engineering, Technische Universitat Braunschweig, May 26, 2015





System of a Drift Sealing Structure

P_ : fluid pressure
; g rock salt

0,: normal stress

T :shear stress_—

contact zone

ﬁalt concrete

sealing structure

EDZ
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Process of Construction:
1. Excavation of the Cavity

rincipal stres cross section I-1
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Process of Construction:
2. Development of the Excavation Damage Zone (EDZ)

cross section I-1I
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Process of Construction:
3. Ripping of the Contour

cross section I-1

LASISOISNEARAAAAN

i formwork
> 1

Development of the EDZ directly after ripping due to the stress situation and the ripping
procedure
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Process of Construction:
4. Concreting of the Sealing Structure

cross section I-1
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Process of Construction:
5. Phase of Hydration — Heating

cross section I-1

i
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Process of construction:
6. Phase of Hydration — Cooling and Autogenous Shrinkage

cross section I-1  Detachment of the
boundary surface
between concrete
structure and salt rock

Parameters of influence:
size of volume strain due
to cooling and shrinkage,
local strength and

stiffness of the materials

c'«""%f
Satlax Technische
g% %E Universitit May 26, 2015 | Joachim Stahlmann | Interaction between salt concrete sealing structures and rock salt | Page 8 I B_ BS
78[%4S  Braunschweig o

o PO 1]

¥,
¢ﬁ\"sl‘,‘.ﬂ'-





Process of construction:
6. Phase of Hydration — Cooling and Autogenous Shrinkage

cross section I-1

rock salt salt concrete
T

b

—> G
ft > Ot
fi>t 5
deformation

f. < O due to
f.<t shrinkage

Decrease of the normal stress perpendicular to the contact zone and development of
connected or local cracks
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Process of Construction:
7. Injection of the Contact Zone

after concreting
rock salt
EDZ

salt concrete

—

grout

after injection

Reduction of cracks due to
viscosity of the grouting material
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Evolution of Normal Stress over Time
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Seepage Flow Model
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Conclusions

Recheck your engineering model if the predicted behaviour
doesn't correspond with the measured behaviour.

Remark: For the In situ test dam ERAM the desired result of an integral
permeability of 1018 m2 was achieved.
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,Mit dem Wissen wachst der Zweifel.”

(With knowledge doubt increases)
J. W. von Goethe
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