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Problem Statement and Objectives

* Problem Statement
= Solution-mined caverns in salt domes are used to store natural gas,
liquid hydrocarbons, and produce brine for several industrial uses.

= Cavern preferably developed near center of salt dome, but with
continued development space for additional caverns diminishes.

* Main Objective
» |nvestigate the some of the key parameters associated with the leaching
and operation of caverns located near salt dome boundaries.

* Provide a preliminary understanding of cavern behavior near salt dome
boundaries to ensure that a cavern is constructed and operated in a way
that it maintains its structural stability and hydraulic integrity.






Salt Dome and Cavern Placement

* Determining the Boundary of a Salt Dome
= Wells drilled through the salt

= Seismic studies which consider sonic velocities (speed of sound travels
faster through salt than surrounding sediments)

http://www.geoexpro.com/articles/2010/04/depth-imaging-~seeing-~the-invisible





Important Geologic Factors Influencing
Stability and Integrity

* Delineation of the Salt Dome Boundary
= Accuracy largely dependent on well control, seismic interpretation
(good accuracy may be within 10s of feet or a few meters)
= Caprock thickness and extent over edges of salt dome

« Many Geologic Complexities
= Faults, steep dips, overhangs, and other anomalies.
= May limit resolution of dome boundary to within a few hundred feet
or tens of meters, typical of most Gulf Coast salt domes.

« Boundary may be a gradual transition from pure salt

and flanking sediments.
= Transition zone consisting of a mixture of salts and nonsalts.
= Shale sheath
= Trapped hydrocarbons, gas within salt






Cavern Design and Operation Factors

* Design Factors
= Diameter
= Height
= Depth
= Distance to salt dome boundary

« Operation Factors
= |eaching rate
= Cavern Fluid Pressures
= Brine-Filled (pressure gradient=0.0118 MPa/m or 0.52 psi/ft)
= Mechanical Integrity Test occurs nearly instantaneously (pressure
gradient=0.0204 MPa/m or 0.90 psi/ft at casing seat depth)






Three-Dimensional Model

Cylindrical shaped salt dome with a
diameter of 1800 m

Top of model represents the ground
surface with the top of the salt dome
at 150 m

Through symmetry, only % of salt
dome included in the model with a
single cavern on one boundary
Sediments extend a distance of 4x
the dome diameter or 7200 m

Model extends to a depth of 3,000 m

Isometric View

il

Depth Height Diameter Distance
300 m 60 m 15 m 15 m
900 m 300 m 30m 30 m
1500m 600m 60 m 60 m
120 m 120 m
240 m 240 m

Plan View
Cavern Midheight






Modeling Assumptions

o Salt (Viscoelastic Model)
= Munson [1998] defined the typical range of creep for Gulf Coast
domal salt as being either hard (slow) or soft (fast)
= Temperature gradient T=21°C + 0.027°C/m x depth
* Young’s modulus (E) E=31.0 GPa; Poisson’s ratio (v) v=0.25
= Density of salt = 2.16 g/cc
« Sediments Properties (Mohr-Coulomb Plastic Model)
* Young’s modulus (E) E=4 GPa; Poisson’s ratio (v) v=0.35
= Strength consistent with sand: Cohesion=0; Friction angle (¢) ¢=30°
= Density of sediments =2.30 g/cc
» Cavern Pressure
» Brine-Filled; pressure=0.0118MPa/m (0.52 psi/ft)
= MIT; pressure=0.0204 MPa/m (0.9 psi/ft) at casing seat depth
 In Situ Stress Distribution

= [sotropic and lithostatic stress in salt
= Anisotropic stress in sediments






In-Situ Stress Distribution (K=0.7)

« Salt isotropic and lithostatic
= Qver geologic time salt creeps to relieve stress differences.
 Anisotropic stress in sediments Profile afbids CIE
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In-Situ Stress Distribution

« Large shear stresses developed within the sediments

Profile at Mid-height of
cavern (Depth=1050 meters)
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In-Situ Stress Distribution Validation

 Faulting around a salt dome
= Radial and circumferential faulting patterns around a salt dome
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Performance Measures

10 T T

—Linear Criterion (0.09)

 Structural Stability :
= Salt damage (microfracturing) .
= Damage Potential (DP) Criterion //
[Van Sambeek et al. 1993] 7 it egion /
= DP<0.09 for Safe Conditions e V4
J ‘/
Shear Stress Measure 2
DP = i . //
I 1 Mean Stress Measure 3 /’
« Hydraulic Integrity 2 / Nondilating Region
= Assume salt and sediments have //
zero tensile strength 1
= |ncreases in porosity and o " - " -
permeability may promote tensile I, (MPa)
stress but effective stresses were
not considered
o < O Least Compressive Principal Stress

max should remain compressive





Constants

Cavern Diameter Variation Depth=900m

Distance=60m

(MOm, 120m, 240m) Height=300m

» Brine Filled Conditions for 20 years to replicate liquid storage
operations
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Constants

Cavern Diameter Variation Depth=El

Distance=60m

(MOm, 120m, 240m)  Heignt=300m

» Brine Filled Conditions for 20 years to replicate liquid storage
operations
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Constants

Cavern Diameter Variation Depth=900m

Distance=60m

(w()m, 1 20m, 240m) Height=300m

* Mechanical Integrity Test (MIT) Conditions
= Rapid Pressure Increase

Profile at Mid-height of

Lo cavern (Depth=1050 meters)
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Cavern Diameter and Distance Variation
Average stress calculated
(15m, 30m, 60m, 120m, 240m) for at ngid-aeight of ca\fern

in pillar region

« Cavern Distance to Edge of Salt Dome/Pillar Thickness (P)
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Cavern Distance to Dome Edge Variation
(15m and 60m)

P/D =0.25 (P=15m,D=60m)  P/D =1.0 (P=60 m, D= 60 m)

Damage Potential (DP)

0.18 <DP

0.16 <DP<0.18
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10.08<DP<0.10 MIT Pressure
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0.02 <DP<0.04
DP <0.02

Constants

Depth=900m
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» Cavern Diameter (D) Height=300m






Cavern Distance to Dome Edge Variation
(15m and 60m)

P/D =0.25 (P=15 m, D= 60 m) P/D =1.0 (P=60 m, D= 60 m)

Damage Potential (DP)

0.18 <DP
0.16 <DP<0.18
0.14 <DP<0.16
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0.10 <DP<0.12 MIT Pressure

P/D =0.25 (P=15 m, D= 60 m) P/D =1.0 (P=60 m, D= 60 m)
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] 0.08 <DP<0.10
0.06 < DP < 0.08
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DP < 0.02
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« Cavern Diameter (D) Height=300m






Cavern Distance/Cavern Diameter (P/D)

» \Volume of salt with a DP value greater than 0.09 significantly increases
as the P/D ratio decreases during a rapid pressure increase (MIT)
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Constants

Cavern Height Variation Depth=300m
MtfﬂOm) Distance=15m

» For caverns instantaneously subjected to a rapid pressure increase (MIT), the
maximum damage potential values were predicted near the top of the cavern, and
the damage potential values were similar for tall caverns.
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Constants

Cavern Depth Variation Heigh=300m
MM’", 1500m) Distance=15m

Shallow cavern interaction with the top of the salt dome.
» As cavern depth increases, confining pressure (i.e. mean stress) increases,

pressure differentials between brine and MIT pressures increases, and cavern

closure increases.
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Dome Boundary Zone or Transition
Zone of Salt

« Main impurity in salt domes is anhydrite which is correlated to slower
creeping salt
 Brine-filled conditions after 20 years

Profile at Mid-height of
cavern (Depth=1050 meters)

0.09 ‘
I
I No Transition Zone 60-m Diameter 50-m
008 Cavern Transition
| N Zone
0.07 ——50 m Transition Zone \
~0.06 |

n )
N~

N\

Damage Potential (
2

o

o
o
N
|

0.03
//
]
0.01 |
0 " " " " " " " " " " " " " " "
600 650 700 750 800 850 900

Model Distance (meters)





Additional Research

* Salt Dome Transition into Sediments (“Transition Zone”)
« Anhydrite, Shale, Sediments

* Poromechanical Modeling of Fluids near Salt Dome
» Pressurized fluids in pore space of salt and sediments





Conclusions

S

* In, general, brine-filled conditions did not indicate any concerning
circumstances regarding cavern stability and integrity, however
principal stresses are reduced the closer a cavern is placed to the
dome boundary.

« Arrapid pressure increase similar to a Mechanical Integrity Test
results in a further reduction in the principal stresses within the salt
web.

« Both cavern fluid pressure and P/D ratio have a substantial affect on
the hydraulic integrity and stability of a cavern near the dome
boundary.

« Taller cavern predicted to be less stable than a shorter cavern.

» Deeper cavern predicted to be less stable than a shallow cavern;
however, a shallow cavern may interact with the top of the salt dome.

« The dome edge or transition zone may disrupt cavern tightness if
there is an increase in the porosity and permeability or variations in
creep rate, stiffness, and strength which may cause instability.






Isometric View
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Overview

1. Salt Cavities

2. Geotechnical Characteristics

3. Basic Design Aspects

4. Documentation of Safety

4.1 Laboratory Investigations

4.2 Multi-physical Modelling and Numerical Simulation
4.3 Validation/ Quality Assurance

5. Some Basic Phenomena with Respect to Load-
bearing Behaviour

6. Conclusion — Improved Design Concept
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1. Salt Cavities

P

Exemplary sketch of a domal salt
structure including gas storage cavities,
KBB UT GmbH, Hannover

<« above ground facilities
<« borehole — connection between
above ground facilities and

underground cavities

<« cavities in saliniferous rock mass

formation, especially rock salt mass

excavation: solution mining method

R
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apl. Prof. Dr.-Ing. habil. U. Dusterloh
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2. Geomechanical Characteristics — Phases of Cavern Way of Life/1

Exploration |COnstruction Completipn long-term life
e | = = or death?
i ErSt ; Ope tI.On
aas
e Abandon
Fill
Driling borehcle Startof 'W“?d."'“"""' Complation of Capressdges  Srage comaton ment7

soluionmining -~~~ mining - soluionmining  displaces brine ~ for decades

Different phases in lifetime of a storage cavern in rock salt mass, KBB UT GmbH, Hannover
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2. Geomechanical Characteristics /2

Solution mined cavities in rock salt mass
— excavation not accessible

(access only through drill hole) Depth area

500-2000 m

Rock mass only in parts

explored; inhomogeneous 4. Monitoring of

mechanical cavern
behaviour during operation
— only indirect possible

3. Proof of impermeability
(environment, effectiveness)
- rock mass

- drill hole

— only indirect possible

2. Construction elements :

- rock salt mass

- overburden (and other non
halitic rock formations) and

- internal pressure

— no additional support for

enlargement of static safety

possible during excavation/

operation

1. Compliance of the pregiven
size | configuration
during excavation (solution
mining process)

— only indirect and stepwise
possible via sensor
measurements

Characteristics of solution mined salt cavities with respect to geotechnical design

Univ.-Prof. Dr.-Ing. habil. K.-H. Lux 8" Conference on the Mechanical Behaviour of Salt
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3. Basic Design Aspects Regarding Geomechanical Safety
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General demands for geotechnical safety and related design parameters according to Lux (1984)
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4.1 Documentation of Safety / Laboratory Investigations /1

Rock mechanical laboratory of Clausthal University of Technology — a first impression
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4.1 Documentation of Safety / Laboratory Investigations /2
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4.2 Documentation of Safety / Multi-physical-Modelling /1
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4.2 Documentation of Safety / Multi-physical-Modelling /2 - Simulator
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4.3 Documentation of Safety / Validation - Optimized Design
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5. Some Basic Phenomena — Cavern Construction
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3. Some Basic Phenomena — Cavern Operation /1
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Representative intensified cavern operation
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and temperature profile (below) subjected to total tensile stresses
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3. Some Basic Phenomena — Cavern Operation /2
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3. Some Basic Phenomena — Cavern Operation /3
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Representative intensified cavern operation

profiles versus time - pressure profile (above) Spatial extension of rock mass zone around cavity
and temperature profile (below) subjected to mechanical damage

Univ.-Prof. Dr.-Ing. habil. K.-H. Lux 8! Conference on the Mechanical Behaviour of Salt

apl. Prof. Dr.-Ing. habil. U. Diisterloh From Birth to Long-Term-Life — Main Aspects Regarding THM-

Coupled Simulation Of Salt Cavern Behaviour 15





3. Stress redistribution due to salt damage at cavern contour zone
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5. Some Basic Phenomena — Cavern Abandonment /1

surface
surface

overburden / cap rock
overburden / cap rock

«—— top of salt
& top of salt

still intact geologic barrier

(rock salt mass) still intact geologic barrier

(rock salt mass)

infiltration zone ) )
infiltration zone

creeping salt rock mass

. ; creeping salt rock mass
{— convergence — brine pressure build-up) At

{(— convergence — brine pressure build-up)

ring solid waste / pore water

N

long-term safe sealed cavities material properties like

clay/ soft rock
Brine filled Cavity ¢ Solid Waste filled Cavity
long-term behaviour — main mechanisms?
— any significant differences?
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5. Some Basic Phenomena — Cavern Abandonment /2
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Pressure-driven fluid infiltration process —
sealed brine-filled cavity in salt rock mass
- hydraulic break-through

- brine release

- very small convergence

Wolters et al. (2015)

Pressure-driven fluid infiltration process —

sealed waste-filled cavity in salt rock mass (clay properties)
- no hydraulic break-through

- no brine release

- extremely small convergence

(extrapolation to document integrity of salt rock mass
necessary due to numerical limits)
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6. Conclusion — Improved Design Concept /Questions

M/T-Coupled Simulation (i) Must damage of rock salt mass be generally excluded
or can damage of rock salt mass be generally accepted
observing some boundary conditions?

exp\'\c'\t'mc\usion O ed =
I merically determin (ii) Can limited damage of rock salt mass next to cavern
| r’:’\\i\—trans'\t\on zone 1N contour be accepted?
[| caverndesign (iii) Are mechanically induced damages and
N 7 hydraulically/thermally induced damages of same
( \;\,‘ importance with respect to static stability and
(’ | y tightness?
“ {/ (iv) Can thermally induced total tensile stresses, i.e.
w | | tensile fractures be tolerated? — no acceptance or
\‘.\y , /' acceptance of limited spatial extension and/or amount?
J (v) Are accumulations of damage with continued
operation time to be prevented?
1 intact rock mass (vi) Can the onset of inaccessible damage be identified

I (hermal-mechanical inducedtensile fracture zone and then monitored?
hydraulic-thermal induced infiltration zone . .
hydraulic induced infiltration zone => Answer: TH2M-Coupled Investigations -

| HISCHRTCR MR camape Eang First result: damage of rock salt already occurs during

cavern construction before cavern operation —

Damage of Rocksalt/ different modes consequences for further simulations/ cavern design?
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