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Evaluation of Global Horizontal Irradiance to Plane
of Array Irradiance Models at Locations across the

United States
Matthew Lave, Member, IEEE, William Hayes, Andrew Pohl, and Clifford W. Hansen

Abstract—We report an evaluation of the accuracy of combi-
nations of models that estimate plane-of-array (POA) irradiance
from measured global horizontal irradiance (GHI). This estima-
tion involves two steps: (1) decomposition of GHI into direct and
diffuse horizontal components; and (2) transposition of direct
and diffuse horizontal irradiance to POA irradiance. Measured
GHI and coincident measured POA irradiance from a variety of
climates within the United States were used to evaluate combina-
tions of decomposition and transposition models. A few locations
also had diffuse horizontal irradiance (DHI) measurements,
allowing for decoupled analysis of either the decomposition or the
transposition models alone. Results suggest that decomposition
models had mean bias differences (modeled versus measured)
that vary with climate. Transposition model mean bias differences
depended more on the model than the location. When only GHI
measurements were available and combinations of decomposition
and transposition models were considered, the smallest mean bias
differences were typically found for combinations which included
the Hay/Davies transposition model.

I. INTRODUCTION

MODELS which estimate plane-of-array (POA) irradi-
ance from measured global horizontal irradiance (GHI)

are critical to PV performance analysis because often only GHI
measurements are available whereas the PV modules being
analyzed are tilted to maximize annual energy production.
Modeling POA irradiance from GHI involves two steps: (1) the
decomposition of GHI into its direct and diffuse components,
usually expressed as diffuse horizontal irradiance (DHI) and
direct normal irradiance (DNI), and (2) the transposition of
these components to POA of the modules. No combination
of decomposition and transposition models is widely accepted
as a standard for converting GHI to POA; various pairs of
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decomposition plus transposition models are in use. This lack
of consistency leads to different predictions of POA irradiance,
even when using the same input GHI. For example, Fig. 1
shows that annual POA energy estimated using the program
PVsyst [1] can vary by over 1% simply by changing the
transposition model from Hay/Davies [2] to Perez [3].

Fig. 1. Annual differences in POA irradiance and AC energy between the
Perez and Hay/Davies transposition models as implemented in PVsyst.

There are numerous previous works evaluating either de-
composition models (e.g., [4], [5]), transposition models (e.g.,
[6], [7], [8]), or combinations of both (e.g., [9]). However,
most of these evaluations compare models with data at a single
location (Ineichen [4] is a notable exception as 22 locations
across the world were used to test decomposition models),
and most do not go beyond simple annual metrics such as
root mean squared error (RMSE) or mean bias error (MBE).
Here, we evaluate the performance of decomposition models
and transposition models separately, as well as combinations
of decomposition with transposition models, at a variety of
locations across the United States. Our work builds upon pre-
vious studies because we analyze each model’s performance
over many different test climates and we examine model
performance in greater detail: we consider decomposition
model errors as a function of clearness index, explore the
impact of changing albedo, examine the relationship between
the bias in model combinations and the biases in the separate
decomposition and transposition models, and we use redundant
sensors to reduce the effect of sensor measurement bias on the
analysis.
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II. MODELS

Figure 2 shows how a transposition model, or the combi-
nation of a decomposition and a transposition model, is used
to estimate POA irradiance from available measurements. We
discuss the specific models we considered in our analysis in
the following subsections.

A. Decomposition Models

We considered the decomposition models listed in Table I.
While this is not an exhaustive list of all decomposition
models, it includes models that are commonly used (e.g., Erbs
[10] which is used in PVSyst) or have been recently proposed
as improvements over common models (e.g., Boland [11]). All
models are empirical, in that their equations are not formally
derived from physical laws but rather involve coefficients that
were estimated from a fixed set of measured data at one or a
handful of locations. We refer the reader to the references in
Table I for detailed model descriptions.

Note that Reindl [12] proposes three different models of
increasing complexity (termed here Reindl 1, Reindl 2, and
Reindl 3) depending on the available input data. Additionally,
it was found that the performance of the Reindl models
during times of high clearness index might be improved by
adjusting the bound between two of the piecewise clearness
index intervals (see details in Appendix A). Specifically, in the
Reindl adjusted models, the intervals in equations 2b, 3b, and
4b in [12] are changed to 0.3 < kt < 0.83 and the intervals
in equations 2c, 3c, and 4c are changed to 0.83 < kt. The
Reindl models with this adjustment are referred to here as the
Reindl adjusted models.

TABLE I
DECOMPOSITION MODELS.

Model Input variables (to compute DF) Abbreviation
Orgill and
Hollands [13] Kt OH

Erbs [10] Kt Er
Boland [11] Kt Bo
Reindl 1 [12] Kt R1
Reindl 1 adj Kt R1a
DISC [14] Kt, SunEl DIS
DIRINT [15] Kt, SunEl DIR
Reindl 2 [12] Kt, SunEl R2
Reindl 2 adj Kt, SunEl R2a
Reindl 3 [12] Kt, SunEl, AmbT , RH R3
Reindl 3 adj Kt, SunEl, AmbT , RH R3a
Posadillo [16] Kt, SunEl, MF Po

Most decomposition models compute the diffuse fraction,
DF = DHI

GHI , which is then converted into DHI by multiplying
by the GHI. Some models alternatively compute a direct
fraction and hence DNI. Because DHI and DNI are related
by:

DNI =
GHI −DHI

sin(SunEl)
, (1)

all decomposition models effectively produce estimates of both
DHI and DNI.

All decomposition models use at least the clearness index
Kt to compute the diffuse fraction (or equivalent). Many
models also account for the solar elevation angle SunEl.

The Reindl 3 models use the ambient temperature AmbT and
the relative humidity RH , while the Posadillo model uses a
modulating function MF based on the 5-minute variability
in GHI. DIRINT was used with its stability index, which is
derived from the hour before, current, and hour after clearness
index values.

B. Transposition Models

Table II lists the transposition models we evaluated. The
Hay/Davies and Perez models are the most commonly used
transposition models, while the Isotropic model gives a base-
line with simple assumptions. The Sandia model is identical to
the isotropic model, except that it uses an empirically-derived
ground albedo (Eq. 5) instead of assuming a constant value.
The transposition models determine total POA irradiance by
estimating the direct, ground reflected diffuse, and sky diffuse
components on the plane of array:

POA = POAdir + POAdiff,refl + POAdiff,sky. (2)

TABLE II
TRANSPOSITION MODELS.

Model Input variables
Isotropic [17] SurfT ilt, DHI
Sandia (King) [18] SurfT ilt, DHI , GHI , SunEl

Hay/Davies [2] SurfT ilt, SurfAz, DHI , DNI ,
HExtra, SunEl, SunAz

Perez [3] SurfT ilt, SurfAz, DHI , DNI ,
HExtra, SunEl, SunAz, AM

In all models, the direct irradiance incident on the POA,
POAdir, is calculated directly from DNI through geometric
relations:

POAdir = DNI × cos(AOI) (3)

where AOI is the angle of incidence of the sun beam on the
POA surface.

The ground reflected diffuse irradiance is estimated as a
simple function of GHI, ground albedo (ρ), and the surface
tilt from horizontal (β) by making the general assumptions of
isotropic reflection and constant albedo in the field of view:

POAdiff,refl = GHI × ρ× 1− cos(β)

2
. (4)

All transposition models we consider use Eqn. 4. The
Isotropic, Hay/Davies, and Perez models use a constant
albedo; we assume ρ = 0.2 in this analysis (see section IV-D1
for a discussion of this assumption). The Sandia transposition
model uses an albedo equation that was empirically fit to data
from Albuquerque, NM:

ρ = 0.012× SunZen− 0.04, (5)

where SunZen is the solar zenith angle in degrees.
The transposition models vary in their estimation of the sky

diffuse irradiance on the POA, POAdiff,sky. The Isotropic
and Sandia models use an isotropic sky assumption such that
the diffuse POA irradiance depends only on the amount of sky
‘seen’ by the surface. The Hay/Davies model separates the sky
diffuse irradiance into two components – circumsolar diffuse
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Fig. 2. Flowchart showing how to model POA irradiance from measured GHI.

irradiance which is a function of the angle of incidence (in the
same form as direct irradiance is treated in Eq. 3) and rest-of-
sky diffuse irradiance using the isotropic assumption – with
an anisotropic index based on the amount of DNI relative to
HExtra used to determine the fraction of the sky represented
by each component. The Perez model separates the sky diffuse
irradiance into three components – circumsolar, near-horizon,
and rest-of-sky – with separate models and lookup tables of
coefficients for each component and for weighting between
components (see [3] for full details). The Perez model was
implemented using the composite coefficients (derived by
aggregating results from multiple locations) listed in [3].

III. DATA DESCRIPTION

Details about the data at each location are shown in Ta-
ble III, and the station locations are mapped in Fig. 3. Data
for Stations 1-6 was contributed by First Solar, Inc., and
GHI and POA measurements were taken using Kipp & Zonen
CMP 11 secondary standard pyranometers (as defined in ISO
9060). Stations 3 and 4 also included DHI measurements using
Irradiance, Inc. Rotating Shadowband Radiometers which rely
on Licor LI-200 radiometers. The LI-200 radiometers have
similar specifications as first class pyranometers [19]. Data
for Station 9 was contributed by Southern Company, and
LI-200 radiometers were used to measure GHI and POA
irradiance. (Note that station numbering is not sequential due
to the removal of two stations which did not have sufficient
periods of record.) Station 10 is located in Golden, CO at
NREL’s Solar Radiation Research Laboratory [20]; the Global
CM22 measurement from a secondary standard Kipp & Zonen
CM22 was used for GHI, the Diffuse CM22 measurement
from a CM22 with a diffuse shading disk was used for DHI,
and the Global 40-South PSP measurement from a first class
Eppley Precision Spectral Pyranometer (PSP) was used for
POA irradiance. Stations 11 (Livermore, CA) and 12 (Albu-
querque, NM) are operated by Sandia National Laboratories.
Station 11 uses a PSP for GHI measurements and a PSP with a
shadowband for DHI measurements, but does not have a POA
measurement. Station 12 uses PSPs for GHI, DHI, and POA
measurements (with a shadowband for the DHI measurement).

Fig. 3. Map of station locations.

For all stations except Station 9, data were available for one
year or more. In these cases, we used only year-long periods
of data (e.g., 1-year, 2-years, etc.) even though longer periods
of record were available to ensure equal weighting of seasonal
effects. At Station 9, only 10 months of data were available.
We choose to include Station 9 in our analysis, but caution
that winter effects may not be fully captured. All data were
collected at a resolution of one minute. POA measurements
were collected at due south azimuth, which is consistent with
the majority of installed solar PV modules, but limits this
analysis to south-oriented fixed tilt systems. Stations 2, 10,
and 12 are at high altitude.

The stations equipped with DHI measurements (Stations
3, 4, 10, 11, 12) allowed for analysis of the decomposition
models separately. The stations with both DHI and POA
measurements (Stations 3, 4, 10, 12) allowed for separate
analysis of the transposition models.

IV. ANALYSIS

Three distinct analyses were undertaken: (A) decomposition
models alone using measured GHI as input and compared to
measured DHI, (B) transposition models alone using measured
GHI and measured DHI as input and compared to measured
POA, and (C) combinations of decomposition and transpo-
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TABLE III
DATA LOCATIONS AND CLIMATES.

Station Location Elevation [m] Climate Zone Measured Data Time Period SurfTilt SurfAz
1 Southeast CA 120 Arid Desert Hot (BWh) GHI, POA 1/2010 - 12/2012 25◦ 180◦
2 Northeast NM 1800 Arid Steppe Cold (BSk) GHI, POA 1/2012 - 12/2012 25◦ 180◦
3 East MI 188 Snow; Fully humid; Warm summer (Dfb) GHI, DHI, POA 8/2012 - 7/2013 25◦ 180◦
4 East MI 181 Snow; Fully humid; Warm summer (Dfb) GHI, DHI, POA 8/2012 - 7/2013 25◦ 180◦
5 East MI 193 Snow; Fully humid; Warm summer (Dfb) GHI, POA 10/2010 - 9/2013 25◦ 180◦
6 Southern NV 572 Arid Desert Hot (BWh) GHI, POA 1/2011 - 12/2012 25◦ 180◦
9 Coastal MS 6 Warm temperate; Fully humid; Hot summer (Cfa) GHI, POA 2/2013 - 11/2013 15◦ 180◦
10 Central CO 1829 Arid Steppe Cold (BSk) GHI, DHI, POA 1/2013 -12/2013 40◦ 180◦
11 Central CA 200 Warm temperate; dry, hot summer (CSa) GHI, DHI 1/2013 -12/2013 N/A N/A
12 Central NM 1657 Arid Steppe Cold (BSk) GHI, DHI, POA 1/2011 12/2011 35◦ 180◦

sition models using measured GHI as input and compared
to measured POA. In this last case, DHI estimated from the
decomposition models was input to the transposition models.

We first summarize all measured data to hourly averages
because the considered models were designed to predict hourly
values of their output quantities. Since errors in measurements
may contribute to model errors in our analysis, we use the term
“differences” rather than “errors” when comparing modeled
to measured data, such that we report on root mean squared
differences (RMSD) and mean bias differences (MBD). Mea-
surement bias errors are difficult to distinguish from model
bias errors, and may influence our analysis. We attempt to
minimize the effect of measurement bias on our conclusions
by evaluating the performance of the combined models using
colocated pairs of GHI and POA sensors in section IV-D3.

Simple quality control metrics were applied to all data. All
GHI, DHI, and POA values less than 0 Wm-2 or greater than
1300 Wm-2 were removed from the analysis, since these values
were likely erroneous measurements. Additionally, any DHI
measurement that exceeded the concurrent GHI measurement
was set equal to the GHI measurement because it is not physi-
cally possible for DHI to exceed GHI. In these few situations,
DHI only slightly exceeded GHI – the difference was not
large enough to warrant rejecting the DHI measurement as
erroneous. At the few times when POA measurements were
excessively greater than GHI measurements (e.g., the POA
measurement indicated clear-sky while the GHI measurement
indicated overcast conditions), data were removed because
the values were likely a result of data collection errors.
Finally, hours for which the average extraterrestrial horizontal
irradiance was less than 10 Wm-2 were eliminated from the
analysis since they can lead to clearness index values much
larger than the decomposition models were designed to accept.
This led to discarding approximately 200 (varies by location)
sunrise or sunset hours of data, but less than 0.01% of the total
annual irradiation, so had a negligible effect on this analysis.

Specific quality control was needed at some of the locations.
At one location, shading was observed that occluded the GHI
sensor but not the POA sensor; times at which this shading
occurred were eliminated from the analysis. At Stations 3 and
4, inconsistencies were found between the CMP11 measured
GHI and the RSR/Licor measured GHI. We chose to use the
CMP11 instrument because it is a higher standard (secondary
standard), however, DHI measurements were only available
from the RSR/Licor. Thus, we computed the diffuse fraction

(DHIRSR

GHIRSR
) using the RSR/Licor measurements, and then mul-

tiplied the CMP11-measured GHI by this diffuse fraction to
obtain the DHI at Stations 3 and 4.

A. Decomposition Models

Relative accuracy of the decomposition models (modeled
DHI compared to measured DHI) was evaluated for the five
stations with DHI measurements (Stations 3, 4, 10, 11, and
12). Figure 4 shows the relative (% relative to GHI) Root
Mean Squared Difference (rRMSD) and the relative Mean
Bias Difference (rMBD) for each decomposition model and
each station. These metrics quantify the average (over time)
differences between modeled and measured data: rRMSD
relates to the differences in hourly values and rMBD relates
to the annual difference.
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Fig. 4. Relative (to GHI) root mean squared (rRMSD) and mean bias (rMBD)
differences (modeled minus measured) for each of the 12 decomposition
models (x-axis) at each of the five stations with DHI measurements.

Model performance is similar across all stations for the
“simple” decomposition models – those which only use Kt



5

and GHI as inputs (Orgill and Hollands, Erbs, Boland,
Reindl 1, and Reindl 1a) – which have between 11-17%
rRMSD. The rMBDs do not show this same consistency, as
they range from -5% to +5% between stations, although at
the same station all simple models have similar performance.
Both the relative similarity of rRMSDs across locations and
the variation of rMBD by location is in agreement with the
findings of [4].

The rMBD differences by location were at least partly due to
climate differences: the biases were negative for the cloudier
eastern Michigan stations and were positive for the clearer
Livermore and Albuquerque stations (again consistent with [4]
who generally found negative bias errors in DNI models at
clear locations). The simple decomposition models typically
under-predict DHI during cloudy periods and over-predict DHI
during clear periods.

Fig. 5 shows the errors in the Erbs model plotted as a
function of the measured clearness index and diffuse fraction,
and the rMBD as a function of clearness index. During partly
cloudy periods, the Erbs model underestimates the DHI (dark
colors in Fig. 5). The dominance of partly cloudy conditions
at Station 3 (i.e., points falling above the black dashed line in
Fig 5) causes a negative bias in the Erbs model. Conversely,
during clear periods the Erbs model overestimates DHI (light
colors in Fig. 5). At Station 11, the many clear periods (i.e.,
the collection of points around clearness index Kt = 0.75,
diffuse fraction DF = 0.1) lead to a positive bias in the Erbs
model.

Nearly identical bias trends were observed in all simple
decomposition models. The more complicated decomposition
models showed the same overall behavior – underestimating
DHI in cloudy locations and overestimating DHI in clear
locations – but bias analysis was more complicated due to
the additional input variables used by the models.

At all locations, the DIRINT model had the smallest rRMSD
and rMBD. However, the performance of the simple models
was not significantly worse. Consequently, we focused our
analysis of model combinations on those involving either the
DIRINT model, because it shows the best performance, or the
Erbs model, because it is representative of the simple models
and is the default decomposition model in PVSyst.

B. Transposition Models

Using measured DHI values at Stations 3, 4, 10, and 12
the relative accuracy of the different transposition models was
evaluated. Fig. 6 shows the rRMSDs and rMBDs.

With the exception of the Sandia model, the model biases
were relatively consistent across the different locations. The
isotropic model always produced the lowest POA estimates
since it does not add any enhanced diffuse irradiance in the
circumsolar region. The albedo correction that the Sandia
model applies to the isotropic model caused the Sandia model
to always have larger POA estimates than the isotropic model.
Based on Eq. 5, the Sandia model albedo exceeds the 0.2
assumed in the isotropic model when the solar zenith angle
is greater than 20◦, which almost always was the case at
the stations considered due to their mid latitudes. The Sandia

model had the lowest rMBD at Station 12, as expected due to
the model being calibrated using data at this location. rRMSDs
were larger for the isotropic and Sandia models than for the
Hay/Davies and Perez models.

Both the Hay/Davies and Perez models produced rMBDs
that were smaller than 1.5% at all locations. The Perez model
always estimated 1 to 2% more annual POA irradiance than
the Hay/Davies model, consistent with the analysis run in
PVsyst shown in Fig. 1. The Perez transposition model has the
smallest rRMSD at all locations, indicating it may be the best
model choice when measured DHI is available. However, the
Hay/Davies model results in only slightly increased rRMSD.
The magnitude of rRMSD values at Station 10 are consistent
with those found in [9], which also used Station 10 for evalu-
ation. However, the Perez rMBD was much more negative in
[9] than found here. It is possible that different (e.g., location-
specific) coefficients were used with the Perez model in [9],
leading to this different result. Since the Perez and Hay/Davies
models had the smallest rRMSD values and often had the
smallest magnitude rMBD values, for combination models
evaluation we focus on the Hay/Davies and Perez transposition
models.

C. Combined Models

We focused our analysis on model combinations which
involved the two best performing decomposition (Erbs and
DIRINT) and transposition models (Hay/Davies and Perez),
resulting in four combined models. The rRMSDs and rMBDs
of these combined models are shown in Fig. 7.

The same order of transposition model rMBD
(Perez > Hay/Davies) is observed. In the combined model
case, however, all combinations tend to overestimate annual
irradiance, meaning that combinations involving the Perez
transposition model are now even more positively biased
than noted in the transition model with measured DHI case.
The DIRINT plus Hay/Davies model combination typically
had the smallest rMBDs, though the Erbs plus Hay/Davies
combination had only slightly larger rMBDs. The rRMSDs
change more with changing station than with changing model.
Although the rMBDs are rather consistent across Stations 2-6
(∼1% for combinations involving Hay/Davies and ∼2% for
combinations involving Perez), the rRMSDs vary widely
across those locations (from <5% to over 10%).

D. Further Analysis of Combined Model Biases

This initial analysis of the combined models inspired three
further investigations: (1) the impact of the assumption of
albedo = 0.2 on combined model results, (2) how bias errors in
measurements may be affecting combined model results, and
(3) how the individual decomposition and transposition model
biases related to the combined model biases.

1) Impact of Albedo Assumption: In Eq. 4, we assumed a
ground albedo ρ = 0.2 for both the Hay/Davies and Perez
transposition models. This is a simple assumption consistent
with previous works (e.g., as used by [17] for snow-free
months). However, Ineichen et al. [21] showed that this
simple assumption may lead to large errors in ground reflected
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diffuse estimates. To test the impact of varying albedo, we
ran transposition and combined models with albedos ranging
from 0.1 to 0.3. The rMBDs for the Hay/Davies and Perez
transposition models, and the Erbs + Hay/Davies and Erbs +
Perez combined models are shown in Fig. 8. Changing the
albedo causes a larger change in rMBD at Stations 10 and
12 due to the high tilt angles (40◦and 35◦, respectively) and
typically larger GHI values at these locations.

For the transposition models alone (dots in Fig. 8), in
the ρ = 0.2 case the Hay/Davies and Perez models have
similar magnitudes of rMBDs (as discussed in section IV-B).
However, if the albedo were ρ = 0.3, the Perez model
would have smaller rMBDs at all 4 test locations. Similarly, if
ρ = 0.1, then the Hay/Davies model would have the smallest
rMBDs. Since the true albedos are not known, we retain our
conclusion (from section IV-B), that both the Hay/Davies and
Perez models appear to have similar performance when using
measured DHI.

For the combined models (lines in Fig. 8), at almost all
station and albedo combinations, the Erbs + Hay/Davies model
has the smallest rMBD. The only exceptions are for ρ = 0.1
at Stations 10 and 12, in which case the Erb + Perez model
has the lowest rMBD. Because of the better performance by
the Erbs + Hay/Davies model, we support the conclusion
(from section IV-C) that when using modeled DHI, combined
models including Hay/Davies appear to have the smallest
rMBDs. This conclusion is consistent with Ineichen et al.’s
[21] comment that the Perez model is highly sensitive to the
quality of the measurements used, suggesting it may have
weaker performance when inputting modeled DHI.

2) Possible Influence of Measurement Biases on Combined
Model Findings: While it appears that model combinations
involving Hay/Davies are less biased, our results could be
influenced by sensor measurement biases. For example, if the
POA measurement were biased high such that it recorded too
much POA irradiance, even a perfect combined model (i.e.,
one that perfectly predicts the true POA) would be found to
have a negative bias when compared to the biased measured
POA. Similarly, a bias in the GHI measurement can affect the
bias in the modeled POA irradiance.

We attempted to reduce the effect of sensor measurement
bias by looking at multiple pairs of GHI and POA sensors at
the same station. While each GHI or POA sensor may have
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Fig. 7. Relative (to POA) root mean squared (rRMSD) and mean bias
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models.
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a small measurement bias (e.g., due to calibration errors),
we expect that the average bias over many pairs of GHI
and POA sensors will be close to zero. Thus, by running
the combined models for many different pairs of GHI and
POA measurements, we will reduce the possible impact of
measurement bias on our analysis. We focused on Stations 5
and 6 since they had the most pairs of GHI and POA sensors.

Station 5 had 6 GHI and 6 POA sensors (36 total possible
GHI-POA sensor pairs), and Station 6 had 5 GHI and 5 POA
sensors (25 total possible GHI-POA sensor pairs).
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Fig. 9. Histogram of the counts in each rMBD bin (x-axis) for combined
models using Erbs (left plots) or DIRINT (right plots) using the 36 (Stn. 5,
top plots) or 25 (Stn. 6, bottom plots) possible combinations of GHI and POA
sensors. For example, at Station 5 for the Erbs + Hay/Davies model (top left
plot), there was one GHI-POA pair that resulted in a rMBD of -1.25%.

The distributions of rMBDs at Stations 5 and 6 for
model combinations consisting of either Erbs or DIRINT
plus Hay/Davies or Perez are shown in Fig 9. The widths
of each distribution are around 3%, which is consistent with
expected sensor uncertainties [22]. The mean rMBDs for
combined models with Hay/Davies (0.2% to 0.5%) are always
closer to zero than the mean rMBDs for models with Perez
(1.4% to 1.7%). Thus, when sensor error is minimized, the
model combinations with the Hay/Davies transposition model
continue to show the smallest bias.

3) Relationship between Combined and Individual Model
Biases: In the results shown in Fig. 7, the rMBDs at Stations
3 and 4 (cloudy locations) were more positive for the combined
models than for the transposition models with measured DHI.
This is expected since both the Erbs and DIRINT models
underestimated DHI (Fig. 4), and when the decomposition
models underestimate DHI, they inherently overestimate DNI
(since DNI and DHI are related by Eq. 1). A larger DNI
estimate then typically leads to a larger POA irradiance
estimate since the POA is usually chosen to maximize direct
(and hence annual) irradiance.

However, while both the Erbs and the DIRINT models had
positive errors at Station 12 (+2.4% and +1.5%, respectively),
suggesting a decrease in POA irradiance, the rMBD was
practically unchanged for the combined models from the trans-
position model with measured DHI case. The Erbs with Perez
model actually leads to an increase in the POA irradiance.

Fig. 10 shows the relationship between decomposition
model bias, transposition model bias, and combined model
bias by plotting these rMBDs for all model combinations at
Stations 3, 4, 10, and 12. It is expected that POA biases
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will increase moving to the left (decreasing DHI and hence
increasing DNI estimates from decomposition models) and
up (increasing POA estimates from the transposition models)
in Fig. 10, and, indeed, for the most part this gradient was
observed. However, some notable exceptions occur. Almost
all model combinations involving the Perez transposition had
positive biases, even when the decomposition models had
positive biases. The isotropic model appears to be insensitive
to small decomposition errors: model combinations including
the isotropic model and a decomposition model with rMBD
between -2% to +4% consistently had combined model rMBDs
of -4% to -2.5%.

Deviations from the expected gradient (increasing combined
model bias with decreasing decomposition model bias and
increasing transposition model bias) are likely due to hourly
deviations in the decomposition or transposition models which
are not fully resolved with the rMBD metric. Due to the
complicated dependencies of each model, biases in the de-
composition models may be either minimized or amplified
by the transposition models. Thus, biases in the individual
models may suggest but do not necessarily determine the
biases of the combined models. Based on the results shown in
Figs. 7 and 10, combined models involving Hay/Davies appear
to have less bias than combined models involving Perez, even
though Hay/Davies and Perez had similar biases when using
measured DHI.

V. CONCLUSION

Global horizontal irradiance (GHI) to plane of array (POA)
irradiance models were evaluated at a variety of locations
across the United States. Decomposition models had different
biases based on location, consistent with previous findings
[4]. This was caused by the models often underestimating the
diffuse irradiance at cloudy locations and overestimating the
diffuse at clear locations. Transposition model performance did
not vary much by location; at all locations the isotropic model
produced the smallest POA estimate and the Perez model
the largest. Based on root mean squared deviation, the Erbs
and DIRINT decomposition models and the Hay/Davies and
Perez transposition models were chosen as the best performing
models and used for evaluation of combined (decomposition
plus transposition) model performance. Little difference was
observed in the combined models whether DIRINT or Erbs
was used for the decomposition model, but a large differ-
ence was seen between the model combinations involving
the Hay/Davies versus the Perez transposition models. Model
combinations involving the Hay/Davies transposition model
appeared to have less bias than combinations involving the
Perez transposition model, even though both Hay/Davies and
Perez had similar bias magnitudes when using measured dif-
fuse irradiance. Further analysis testing the impact of varying
albedo, minimizing the effect of sensor measurement bias,
and examining the impact of decomposition and transposition
model bias on combined model bias continued to suggest
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that combined models involving the Hay/Davies model led
to smaller bias.

Currently, it is common for large, utility-scale PV plants to
install one of more GHI sensors at the plant location before
plant construction to obtain energy production estimates for
financing. The combined model biases in transitioning from
GHI to POA irradiance found here (often on the order of 1-3%
even for the best model combinations) motivate additionally
installing POA irradiance sensors to reduce errors in PV
energy estimates.

Conversely, in locations where no ground measurements are
available and modeled GHI (e.g., satellite-derived or TMY)
is used, bias and random errors in the modeled GHI will
contribute to errors in the final POA estimate (in addition
to errors in the GHI to POA conversion). Further analysis is
needed to understand how these modeled GHI errors interact
with errors in the decomposition and transposition models.

While this work has suggested that it may be best to use
the Hay/Davies model when measured diffuse irradiance is
not available and a decomposition model is used to estimate
diffuse irradiance, it also indicates that both decomposition and
transposition models could be improved. Decomposition mod-
els could be modified to remove the locational dependence,
possibly by using the clear-sky index which, as opposed to the
clearness index, accounts for factors such as the atmospheric
turbidity and station elevation. Further study of the circumsolar
and other sky regions could enhance the transposition model
performance. Transposition models could be designed to have
less sensitivity to deviations in diffuse irradiance such that
they have smaller biases when combined with decomposition
models. Finally, transposition models were designed using
fixed-tilt systems, but could be optimized for single- or two-
axis tracking systems for broader application.

APPENDIX

A. Reindl Adjusted Models

The adjusted Reindl models were developed in previous
(unpublished) analysis, motivated by the observation that
empirically derived models, such as the Reindl models, have
inaccuracies when used in climates that differ from the climate
where they were developed.

This previous analysis used a limited dataset of measured
GHI and measured DHI data collected at Station 2 (a short
time period of DHI measurements were available at Station
2, but were not included in the main paper since a full
year of data was not available). In comparing the Reindl
modeled diffuse fraction to the measured diffuse fraction on an
hourly basis, the Reindl model had poor performance at high
clearness index values corresponding to the highest piecewise
threshold of the model (Kt ≥ 0.78), as shown in Fig. 11. There
were many hours with large clearness index values, (e.g., Kt ≥
0.78) at Station 2 due to the low air mass at the high elevation.
It was found for this dataset that an upper piecewise threshold
of Kt ≥ 0.83 led to a better fit of the measured data, motivating
the adjusted Reindl models.

The adjusted Reindl models were included in the main
paper to show the impact of slight modifications to existing
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Fig. 11. Scatter plots of clearness index (x-axis) vs. diffuse fraction (y-axis)
for (top) all clearness index values and (left and right) zoomed in on high
clearness index values. In all plots, the black crosses show the measured
diffuse fraction, the blue circles are the Reindl 3 modeled diffuse fraction,
and the red circles are the Reindl 3 adjusted modeled diffuse fraction.

models. The Reindl 2 adjusted and Reindl 3 adjusted models
were found to have smaller rRMSEs than the unadjusted
models, especially at high-altitude (Stations 10 and 12) and
predominantly clear (Station 11) locations (Fig. 4), showing
an improvement when using the adjusted models. However,
the Reindl adjusted models continue to have similar (Reindl 1
adjusted) or worse (Reindl 2 adjusted and Reindl 3 adjusted)
performance than other decomposition models. This suggests
that future model development should focus on developing
accurate model forms rather than tweaking specific model
parameters.

ACKNOWLEDGMENT

Thanks to William Hobbs at Southern Company for supply-
ing the data from Station 9.

REFERENCES

[1] A. Mermoud, “PVsyst,” http://www.pvsyst.com/.
[2] J. Hay and J. Davies, “Calculations of the solar radiation incident on

an inclined surface,” in Proc. of First Canadian Solar Radiation Data
Workshop, 59. Ministry of Supply and Services, Canada, 1980.

[3] R. Perez, P. Ineichen, R. Seals, J. Michalsky, and R. Stewart, “Modeling
daylight availability and irradiance components from direct and global
irradiance,” Solar Energy, vol. 44, no. 5, pp. 271–289, 1990.

[4] P. Ineichen, “Comparison and validation of three global-to-beam
irradiance models against ground measurements,” Solar Energy,
vol. 82, no. 6, pp. 501 – 512, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0038092X07002551

[5] C. Jacovides, F. Tymvios, V. Assimakopoulos, and N. Kaltsounides,
“Comparative study of various correlations in estimating hourly
diffuse fraction of global solar radiation,” Renewable Energy,
vol. 31, no. 15, pp. 2492 – 2504, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0960148105003538

http://www.pvsyst.com/
http://www.sciencedirect.com/science/article/pii/S0038092X07002551
http://www.sciencedirect.com/science/article/pii/S0960148105003538


10

[6] P. G. Loutzenhiser, H. Manz, C. Felsmann, P. A. Strachan, T. Frank,
and G. M. Maxwell, “Empirical validation of models to compute solar
irradiance on inclined surfaces for building energy simulation,” Solar
Energy, vol. 81, no. 2, pp. 254–267, 2007.

[7] D. Wlodarczyk and H. Nowak, “Statistical analysis of solar
radiation models onto inclined planes for climatic conditions
of lower silesia in poland,” Archives of Civil and Mechanical
Engineering, vol. 9, no. 2, pp. 127 – 144, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1644966512600648

[8] A. M. Noorian, I. Moradi, and G. A. Kamali, “Evaluation of 12 models
to estimate hourly diffuse irradiation on inclined surfaces,” Renewable
Energy, vol. 33, no. 6, pp. 1406 – 1412, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0960148107002509

[9] C. A. Gueymard, “Direct and indirect uncertainties in the prediction
of tilted irradiance for solar engineering applications,” Solar Energy,
vol. 83, no. 3, pp. 432 – 444, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0038092X08002983

[10] D. G. Erbs, S. A. Klein, and J. A. Duffie, “Estimation of the diffuse ra-
diation fraction for hourly, daily and monthly-average global radiation,”
Solar Energy, vol. 28, no. 4, pp. 293–302, 1982.

[11] J. Boland, B. Ridley, and B. Brown, “Models of diffuse solar radiation,”
Renewable Energy, vol. 33, no. 4, pp. 575–584, 2008.

[12] D. T. Reindl, W. A. Beckman, and J. A. Duffie, “Diffuse fraction
correlations,” Solar Energy, vol. 45, no. 1, pp. 1–7, 1990.

[13] J. F. Orgill and K. G. T. Hollands, “Correlation equation for hourly
diffuse radiation on a horizontal surface,” Solar Energy, vol. 19, no. 4,
pp. 357–359, 1977.

[14] E. L. Maxwell, “A quasi-physical model for converting hourly global
horizontal to direct normal insolation,” Solar Energy Research Institute,
Tech. Rep., 1987.

[15] R. Perez, “Dynamic global to direct conversion models,” ASHRAE
Transactions Research Series, pp. 154–168, 1992.
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