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ABSTRACT
A three dimensional time-domain model, based on Cum-

mins equation, has been developed for an axisymmetric point
absorbing wave energy converter (WEC) with an irregular cross
section. This model incorporates a number of nonlinearities
to accurately account for the dynamics of the device: hydro-
static restoring, motion constraints, saturation of the power-
take-off force, and kinematic nonlinearities. Here, an interpo-
lation model of the hydrostatic restoring reaction is developed
and compared with a surface integral based method. The effects
of these nonlinear hydrostatic models on device dynamics are ex-
plored by comparing predictions against those of a linear model.
For the studied WEC, the interpolation model offers a large im-
provement over a linear model and is roughly two orders-of-
magnitude less computationally expensive than the surface in-
tegral based method.

NOMENCLATURE
WEC Wave energy converter.
T3R2 “Three-translation, two-rotation” WEC studied here.
PCC Power-conversion-chain.
PMT Planar-motion-table.
0n×n Empty matrix of size n.
A∞ Infinite added mass matrix for float.
Ar, Br, Cr Radiation damping state-space system matrices.
C(ξ̇ ) Centripetal-Coriolis matrix.

∗Address all correspondence to this author.

Cm Linear mooring matrix.
G Linear hydrostatic matrix.
IRB Rigid-body moments of inertia.
In×n Identity matrix of size n.
J(ϑ) Euler angle transformation matrix .
J̇(ϑ) Time derivative of Euler angle transformation matrix.
Kr Radiation damping kernel matrix.
MRB Rigid-body inertia matrix for float.
MPCC Rigid-body inertia matrix for power-conversion-chain.
MPMT Rigid-body inertia matrix for planar-motion-table.
S(λ ) Skew symmetric matrix of the vector λ .
Awp Area of the waterplane.
g Gravitational acceleration.
Hs Significant wave height.
rG Center of gravity location (rG =

[
xG yG zG

]T).
Sii 2nd-moments of the waterplane area.
Tp Peak period.
η Inertial position and orientation (η =

[
x y z φ θ ψ

]T
).

µ Radiation damping reaction.
ρ Fluid density.
τh Hydrostatic reaction (τh =

[
fh mh

]T).
τv Viscous damping vector.
τe Excitation vector.
τu Control input vector.
∀ Submerged volume.
ξ̇ Body-fixed velocity (ξ̇ =

[
u v w p q r

]T).
ζ Free surface elevation.
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Figure 1. T3R2 EXPERIMENTAL WEC DESIGN.

INTRODUCTION
A WEC dynamics model, an earlier version of which was

described in [1], is currently being developed to support a re-
search effort focused on the development and testing of advanced
WEC control strategies. This project will employ a purpose-
designed WEC, intended to provide insight into the effectiveness
of prospective control strategies. A cartoon of this WEC with di-
mensions is shown in Fig. 1. This device, referred to as the T3R2
(“three-translations, two rotations”) will be tested and evaluated
at model-scale.

METHODOLOGY
A model based on the formulation suggested by Cummins

[2] has been developed for the T3R2. This model follows the
same general framework as that discussed in [1]. This paper will
focus on improvements made to that model.

[
MRB +A∞ +JT (ϑ)(MPCC +MPMT )J−1 (ϑ)

]
ξ̈

+
[
JT (ϑ)(MPCC +MPMT ) J̇

(
ϑ , ϑ̇

)
+C(ξ̇ )

]
ξ̇

+
∫ t

0
Kr(t−λ )ξ̇ (λ ) dλ

+J(ϑ)T (τh +Cmη)+ τv = τe + τu.

(1)

Kinematics
Two coordinate systems are used to describe the dynamics of the
T3R2 in (1): the inertial position, η , and the body-fixed velocity,
ξ̇ .1

η =
[
ε ϑ
]T

=
[
x y z φ θ ψ

]T (2a)

ξ̇ =
[
ξ̇1 ξ̇2

]T
=
[
u v w p q r

]T (2b)

The orientation of the inertial coordinate system is illustrated in
Fig. 1 (this is also the initial orientation of the body-fixed co-
ordinate system). Euler-angle transformation matrices (see e.g.,
[1, 3]) can be employed to couple these two systems. The dy-
namics of the two frames can be equated as follows.

η̇ = J(ϑ)ξ̇ (3a)

η̈ = J̇(ϑ , ϑ̇)ξ̇ +J(ϑ)ξ̈ (3b)

The forces and moments in each frame are related through a sim-
ilar relationship.

τη = J-T(ϑ)τ
ξ̇

(4)

Here, τη and τ
ξ̇

indicate the forces and moments acting on the
body in inertial and body-fixed reference frames respectively.
The Euler-angle transformation matrix employed in these rela-
tionships is

J =

[
R(ϑ) 03×3
03×3 T(ϑ)

]
. (5)

For the T3R2, as no rotation occurs about the vertical axis (ψ =
0), the component blocks of (5) are

R(ϑ) =

 cθ sθsφ cφsθ

0 cφ −sφ

−sθ cθsφ cθcφ

 (6a)

T(ϑ) =

1 sφ tθ cφ tθ
0 cφ −sφ

0 sφ/cθ cφ/cθ

 . (6b)

1Note that
∫

ξ̇ dt has no meaning, as the orientation of body is always chang-
ing.
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The time-derivative of transformation matrix, J̇(ϑ , ϑ̇), required
by (3b) can be obtained by setting φ = φ(t) and θ = θ(t) and
differentiating with respect to t.

Inertial Effects
The rigid-body inertia of the float is described by the sym-

metric matrix MRB.

MRB =

[
m f loatI3×3 −m f loatS(rG)

m f loatS(rG) IRB

]
(7)

Here, the skew-symmetric matrix operator is employed. The
skew-symmetric matrix for an arbitrary vector~λ =

[
λ1 λ2 λ3

]T
is defined as

S(λ ) =

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 . (8)

Centripetal-Coriolis effects, due to the use of a non-inertial
reference frame in the Newton-Euler equation (1), are given for
the two mass matrices which rotate with the float (MRB and A∞)
as [3]

C(ξ̇ ) =

[
03×3 −S(M11ξ̇1 +M12ξ̇2)

−S(M11ξ̇1 +M12ξ̇2) −S(M21ξ̇1 +M22ξ̇2)

]
. (9)

Here, the 6×6 mass matrix has been defined by 3×3 quadrants
(e.g., M11 is the upper left quadrant).

The rigid-body inertia of the PCC and PMT is represented
in a similar manner, however, these members only affect trans-
lation modes of motion, as the PCC and PMT are not allowed
to rotate. In the process of including these inertial effects in the
equations of motion, which are written in the body-fixed frame,
(3b) produces both the inertial term on the first line of (1) and the
first term in the second line of (1).

Radiation
As discussed in [1], the radiation reaction, µ(t), can be rep-

resented by a state-space model (SSM) to partially alleviate the
computational burden imposed by the convolution in (1).

ẋr = Arxr +Brξ̇ (t)

µ̌(t) = Crxr

such that µ̌(t)≈ µ =
∫ t

0
Kr(t−λ )ξ̇ (λ ) dλ

(10)

An SSM to represent the IRF for a given mode can be obtained
in either the time or frequency domain (see e.g., [4]). The full six
degree-of-freedom radiation effects can be combined by assem-
bling a compound SSM [1].

Hydrostatics
Three models were developed to represent the hydro-

static/gravitational reaction on the T3R2’s float: a linear model,
a surface integral based model and an interpolation based model
(which is informed by the surface integral model).

Linear Formulation. Quite often, a linear formulation
is used to represent the hydrostatic/gravitational reaction for a
floating body (see e.g. [5]). As is generally the case, if the center
of gravity and center of buoyancy lie on the same vertical line
(i.e. the body is statically stable), the linear hydrostatic coeffi-
cient matrix G is a sparse diagonal 6×6 matrix with

G33 = ρgAwp (11a)

G44 = ρg∀
(

S22

∀
+ zB− zG

)
(11b)

G55 = ρg∀
(

S11

∀
+ zB− zG

)
. (11c)

This linear assumption is valid for vertical motions in which the
body is “wall-side” (i.e. the waterplane does not change as a
function of draft) and for small rotational motions.

Surface Integral Formulation. The buoyancy force
experienced by a submerged or partially submerged body is due
to the hydrostatic pressure that acts on its surface. Assuming a
constant density, the hydrostatic pressure in a water column in-
creases linearly with depth.

∂ p
∂ z

=−ρg (12)
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The hydrostatic pressure can be integrated over the surface of a
body to obtain the total hydrostatic force.

fH =−ρg
∫
A

z · n̂dA (13)

For a body comprised of a finite set of q flat faces, each with an
area of A j and unit normal vector of n̂ j, (13) can be written as

fH =−ρg
q

∑
j

z jA j · n̂ j. (14)

Similarly, the moment on the body, about a point to which each
discrete surface has a vector r j, is given by

mH =−ρg
q

∑
j

z jA j · (r j× n̂ j) . (15)

The hydrostatic reaction on the body can thus be determined at
each time-step in a simulation via (14) and (15), while taking ac-
count for the instantaneous submerged geometry. In this study,
the submerged geometry was determined from the instantaneous
body position, η , but did not consider the instantaneous free sur-
face position (i.e. for the purposes of the hydrostatic reaction
calculations, ζ (t,x,y) = 0). The impact of including this depen-
dency will be considered in future work.

These calculation can be implemented numerically via a tri-
angulated description of the body’s surface. Here, the popular
STL (STereoLithograph) CAD format was employed. Figure 2
shows the geometry used to represent the T3R2 (pitched at an
orientation of θ = 25◦) and pressure distribution resulting from
the hydrostatic calculations.2

Two verification studies, the results of which are both shown
in Fig. 3, were conducted for the surface integral hydrostatic
model:

1. Buoyancy force on a sphere at varying drafts - A sphere with
a radius of 1 m, was analyzed at a range of drafts (0 ≤ T ≤
2r); the computed vertical buoyancy forces are compared
in Fig. 3a to the analytic solution via the expression for the
volume of a spherical cap.

∀(T ) = π

3
T 2 (3r−T )

τh(3) = ∀(T )ρg
(16)

2Note that the CAD geometry used for the nonlinear hydrostatics does not
replicate the geometry of the T3R2’s “Wave seal” (see Fig. 1).
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Figure 2. TRIANGULATED T3R2 GEOMETRY AND RESULTING HY-
DROSTATIC PRESSURE DISTRIBUTION, PITCHED AT AN ORIENTA-
TION OF θ = 25◦.

2. Buoyancy force on a block at varying angles of pitch - A
rectangular block (1×0.5×0.25 m, nominally floating with
a draft of 0.125 m, a length of 1 m and a beam of 0.5 m;
the center of gravity located at the center of block’s “keel”)
was analyzed at varying angles of pitch; the pitch restoring
moment calculated via (15) is compared the a linear model
(11c) in Fig. 3b .

Linear Interpolation Formulation. By evaluating the
surface integral hydrostatic model for a matrix of drafts (zmin ≤
z ≤ zmax) and pitch angles (θmin ≤ θ ≤ θmax), response surfaces
can be populated and used in a two-dimensional linear interpola-
tion scheme (in this case, MATLAB’s ‘linearinterp’ scheme was
employed [6]). In use, this interpolation model is roughly 300
times faster than the surface integral hydrostatic model. (Note
that, as the T3R2 is axisymmetric, the roll and pitch reactions
have the same parametric shape.) Figure 4 shows the surfaces
to represent the heave and pitch hydrostatic reactions. Here, the
heave force and pitching moment are shown as they appear in (1)
as τh (i.e. the sign of the reaction is consistent with the location
of this term on the left-hand side of the equation). By compar-
ing Figs. 4a and 4b, we can see that, for the T3R2, the heave
restoring reaction is primarily dependent on the vertical position,
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Figure 3. VERIFICATION STUDIES FOR SURFACE INTEGRAL HY-
DROSTATIC MODEL.

while the pitch restoring reaction shows similar magnitudes of
influence from the pitch and vertical position.

The nonlinearity of these reactions, and its dependency on
the displacement magnitude, is also illustrated in Fig. 5. Here,
the heave and pitch restoring reaction prediction from each hy-
drostatic model is a shown for a range of displacements (the sur-
face integral and interpolation result are shown together here, as
they overlap very closely). The T3R2 float becomes submerged
at a position of z ≤ −0.2 m; this is visible in Fig. 5a where at
z = −0.2 m the integral/interpolation hydrostatic reaction levels
off as the body becomes fully submerged (this behavior is uncap-
tured by the linear model). The pitch reaction, shown in Fig. 5b,
exhibits a more gradually-acting nonlinearity.

RESULTS
Free Decay

Decay tests were conducted, in both heave and pitch, to as-
sess the effect of employing the nonlinear (instantaneous) buoy-
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Figure 4. SURFACES FOR HEAVE AND PITCH REACTIONS.

ancy models. Figure 6 summarizes the results for decay in heave.
Figure 6a shows the decay time histories for a range of dif-
ferent initial offsets. Predictions from the linear model (which
are the same for all motion amplitudes) are shown with those
from the surface integral and interpolation methods (which are
shown together as they match closely). As expected, the nonlin-
ear model’s prediction can be seen to approach the linear model
as the initial offset (and therefore motion amplitude) decreases.
Figure 6b shows a summary of these results by plotting the nat-
ural frequencies observed for each of these tests. In analyzing
these results, it is helpful to refer to the geometric description of
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Figure 5. COMPARISON OF PREDICTED REACTIONS FROM LIN-
EAR AND SURFACE INTEGRAL/INTERPOLATION HYDROSTATIC
RESTORING MODELS.

the T3R2 float shown in Fig. 1. We can see that the T3R2 float is
wall-sided for −0.16 ≤ z ≤ 0.20 m; within this range, the linear
and nonlinear models match well, whereas outside of this range
the discrepancy between them grows.

Figure 7 shows a similar analysis for the pitch decay of the
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Figure 6. HEAVE DECAY PREDICTION FROM DIFFERENT HYDRO-
STATIC FORMULATIONS WITH A RANGE OF INITIAL OFFSETS.

T3R2. Here, it is not quite as straight forward to understand
where the nonlinear behavior “should” arise. However, looking
at Fig. 5b, the nonlinear models can be seen to show a substantial
difference from the linear model near an orientation of ∼ 20◦.
This behavior agrees well with the results shown in Fig. 7.
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Figure 7. PITCH DECAY PREDICTION FROM DIFFERENT HYDRO-
STATIC FORMULATIONS WITH A RANGE OF INITIAL OFFSETS.

Irregular Sea State Response
A set of four of simulations were performed to qualitatively

assess the sensitivity of model predictions to the nonlinear hy-
drostatic models. Two waves, with significant wave heights of
Hs and peak periods of Tp were considered:

Wave A: Hs = 0.20 m, Tp = 1.4 s

Wave B: Hs = 0.75 m, Tp = 1.4 s

Figures 8 and 9 show the free surface time history and the re-
sponse of the float for Wave A and Wave B respectively. In each
case, float response predictions are shown for the linear hydro-
static model and the integral/interpolation hydrostatic model.

In Wave A, the two models predict very similar time-
histories, with the greatest differences seen in pitch. Looking
at the magnitude of the motion, we can see that the float remains
within its wall-sided region (−0.16 ≤ z ≤ 0.20 m), and the dy-
namics should therefore be mostly-linear. The small difference
seen between the vertical position histories in Fig. 8 is likely due
to nonlinear kinematic coupling with the pitch motion (note that
heave couples into axial position via nonlinear kinematics).

For Wave B (see Fig. 9), the amplitude of the float’s motion
is much larger. This larger motion introduces substantial nonlin-
earity to the vertical hydrostatic force and therefore the dynamics
in that mode. This can be seen in all three modes of motion.

CONLCUSIONS
A WEC dynamics modeling, based on Cummins’ equation,

has been formulated to model the nonlinear hydrostatic phenom-
ena of a floating body. To study the effects of this nonlinearity,
tests were conducted to study the decay responses and irregular
wave responses of a single device with and without the nonlinear
hydrostatic effects. The results show that, for the T3R2 device
studied here, the nonlinear model can have a substantial effect
on the dynamics of the device. However, if the vertical motion
is the primary concern, the nonlinear effects are not great when
the motion of the device is small enough to remain within the
wall-sided region.

As discussed in the Methodology section of this paper, fu-
ture work with the model developed here will investigate the ef-
fect of using the instantaneous free surface position in determin-
ing the submerged geometry of the body. Additionally, a major
caveat to the irregular wave response results shown here is linked
to the influence of the hydrostatic model on the float’s position in
the horizontal plane. In the current model, the excitation reaction
is not based on the position of the float which does not reflect re-
ality (ζ = f (x,y, t)). The nonlinear hydrostatic models’ effect on
the float’s position would likely create even larger differences in
the vertical position were the position dependence of excitation
taken into account.
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Figure 8. T3R2 RESPONSE IN IRREGULAR WAVES WITH LINEAR
AND NONLINEAR HYDROSTATIC MODELS (Hs = 0.2 m, Tp = 1.4 s).
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