Truck Transport Results / Progress on Rail Test

SNL-BAM Workshop
7 October 2014
Paul McConnell
SAND2014-18948 PE
What we think we know

- The strains measured in the test program were in the micro-strain levels – well below the elastic limit for either unirradiated or irradiated Zircaloy-4.

- Based upon the test results, which simulated normal vibration and shock conditions of truck transport, strain- or stress-based failure of fuel rods during normal transport seems unlikely.

- Strains on irradiated rods may be less than strains measured on unirradiated tubes.

- Normal conditions of truck transport are more severe than rail.
ISFSI Locations

Lots of Assemblies to be Stored & Transported

Figure 3-3 Cumulative UNF Assemblies Discharged for the No Replacement, Maintain Current, 200 GWe/yr, and 400 GWe/yr.
Transportation

NAC-MPCs (MPC-36 canisters)

NAC-STC rail cask
Courtesy Yankee Rowe

Heavy-haul truck required to get to railhead
Courtesy Yankee Rowe

Hoosac Tunnel
See: http://en.wikipedia.org/wiki/Hoosac_Tunnel

ISFSI

Yankee Rowe
Transportation

Parking lot for heavy-haul truck access to railhead!

Railhead, Portland, Conn. near Connecticut Yankee

Barge transport, Connecticut River (Connecticut Yankee pressure vessel)
Courtesy Connecticut Yankee

Connecticut Yankee barge slip site
Central Storage Facility

Private Fuel Storage NRC-licensed design
Goshute Reservation, Utah

http://www.world-nuclear-news.org/WR-Rethink_on_Utah_used_fuel_storage_project-0408104.html
Repository

Onkalo Facility, Finland
Not a Repository

Yucca Mountain as seen from Amargosa Valley
There Will Be Lots of High Burnup Assemblies

Figure 3-7 Percentage of Assemblies per Burn-up Range – Maintain Current Nuclear Generation Case
Motivation for assembly testing

- Federal Regulations require an assessment of “Vibration - Vibration normally incident to transport”...
 ...imposed on transport packages and contents during “normal conditions of transport”. (10 CFR 71.71)

- The NRC has approved normal transport of low burnup spent fuel.

- However, the technical community needs to establish a technical basis to demonstrate that high burnup fuel rods can withstand all normal conditions of transport.

- Vibrations and shocks have been measured on truck trailers and railcars but not directly on fuel assemblies, baskets, or fuel rods.
In other words, could Zircaloy cladding fracture during normal conditions of transport?

http://sanonofresafety.org/nuclear-waste/
Application of Fuel Assembly Test Results (1)

The margin of safety between the applied loads on fuel rods during transport and the material properties of Zircaloy rods has not been quantified.

The SNL assembly tests provide data – the applied stresses on the rods - related to the issue of the margin of safety:

\[\text{applied rod stress}_{\text{normal transport}} \]

Material property test programs at other national laboratories shall measure properties of high burnup cladding:

\[\text{yield strength}_{\text{cladding}} \]
Application of Fuel Assembly Test Results (2)

- The data from the assembly tests will be used to validate finite element models of fuel assemblies.
- The validated models can be used to predict the loads on fuel rods for other basket configurations and transport environments, particularly rail.

FUEL ASSEMBLY SHAKER TEST SIMULATION, Klymyshyn, et al., PNNL, FCRD-UFD-2013-000168, May 2013
SNL Experimental 17x17 PWR Assembly

Only Zircaloy rods were instrumented with strain gauges and accelerometers.
Basket/Assembly Test Unit

- The test unit included an assembly and a basket.
- The basket is based upon the geometry of the NAC-LWT truck cask PWR basket.
- The assembly was placed in a basket which was placed on 1) a shaker and subsequently 2) a truck trailer.
- The assembly had the same freedom of motion within the basket as it would have in an actual cask.

- 6061 Aluminum Basket
- Sides 1.5 inches thick
- Top/bottom 1 inch thick
- Length 161.5 inches
- Weight 837 pounds
Lead Rod within Copper Tube to Simulate Mass of UO$_2$
(Zircaloy-4 tubes also contained Lead)
Uniaxial Accelerometer and Strain Gauge on Test Assembly

- Spacer Grid
- Copper Rod
- Strain Gauge
- Accelerometer
- Zircaloy Rod
Left: Accelerometers and Strain Gauge on Top-Center Zircaloy Tube and Spacer Grid
Right: Assembly within Open Basket. Note the two Zircaloy-4 rods with instrumentation attached
Shaker Shock Test Video

Top-end view of assembly in basket
Maximum Micro-strains on Zircaloy Fuel Rods during Shaker Shock Test – *Strains are very low*

<table>
<thead>
<tr>
<th>Rod Location</th>
<th>Assembly Span</th>
<th>Position on Span</th>
<th>Maximum Strain (µin./in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-middle rod</td>
<td>Bottom-end</td>
<td>Adjacent to spacer grid</td>
<td>90</td>
</tr>
<tr>
<td>Top-middle rod</td>
<td>Bottom-end</td>
<td>Mid-span</td>
<td>131</td>
</tr>
<tr>
<td>Top-middle rod</td>
<td>Bottom-end</td>
<td>Adjacent to spacer grid</td>
<td>171</td>
</tr>
<tr>
<td>Top-middle rod</td>
<td>Mid-assembly</td>
<td>Adjacent to spacer grid</td>
<td>104</td>
</tr>
<tr>
<td>Top-middle rod</td>
<td>Mid-assembly</td>
<td>Mid-span</td>
<td>97</td>
</tr>
<tr>
<td>Top-middle rod</td>
<td>Top-end</td>
<td>Adjacent to spacer grid</td>
<td>127</td>
</tr>
<tr>
<td>Top-middle rod</td>
<td>Top-end</td>
<td>Mid-span</td>
<td>199 (maximum)</td>
</tr>
<tr>
<td>Top-middle rod</td>
<td>Top-end</td>
<td>Adjacent to spacer grid</td>
<td>70</td>
</tr>
<tr>
<td>Top-side rod</td>
<td>Bottom-end</td>
<td>Adjacent to spacer grid</td>
<td>54</td>
</tr>
<tr>
<td>Top-side rod</td>
<td>Bottom-end</td>
<td>Mid-span</td>
<td>107</td>
</tr>
<tr>
<td>Top-side rod</td>
<td>Top-end</td>
<td>Mid-span</td>
<td>117</td>
</tr>
<tr>
<td>Top-side rod</td>
<td>Top-end</td>
<td>Adjacent to spacer grid</td>
<td>113</td>
</tr>
<tr>
<td>Bottom-side rod</td>
<td>Bottom-end</td>
<td>Mid-span</td>
<td>62</td>
</tr>
<tr>
<td>Bottom-side rod</td>
<td>Bottom-end</td>
<td>Adjacent to spacer grid</td>
<td>121</td>
</tr>
<tr>
<td>Bottom-side rod</td>
<td>Mid-assembly</td>
<td>Adjacent to spacer grid</td>
<td>110</td>
</tr>
<tr>
<td>Bottom-side rod</td>
<td>Mid-assembly</td>
<td>Mid-span</td>
<td>115</td>
</tr>
</tbody>
</table>

Average of All Strain Gages

- **Average Top-middle Rod**: 124
- **Average Top-side Rod**: 98
- **Average Bottom-side Rod**: 102
- **Average Bottom-end Span**: 105
- **Average Mid-assembly Span**: 107
- **Average Top-end Span**: 125
- **Average Top-end Span**: 118
- **Average Mid span**: 107
- **Average Adjacent to Spacer Grid**: 107

(maximum and average highlighted)
Test Unit on Concrete Blocks on Trailer

Concrete simulates mass of a truck cask

Basket/assembly
Truck Test Route
65 km in Albuquerque area
Range of Road Conditions
Route included railroad crossings...
...and rough dirt roads
Strains measured on instrumented rod

Strains correlated with road conditions

dip on Area III Access Road

Poleline Road

Gibson Blvd.
Strains correlated to road surfaces

Pennsylvania St. bridge

speeding to Building 6922

8-inch rut
Rod Strains and FFT

maximum strains occurred at low Hz
Side Basket Showing Cutout for Filming Assembly during Truck Test
Langweilig Video of Assembly during the Truck Test
Maximum Strains Measured during Truck Test similar to shaker results

<table>
<thead>
<tr>
<th>Strain Gauge</th>
<th>Location on Assembly</th>
<th>Maximum Micro-strain Absolute Value (µin./in.)</th>
<th>Road Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 - 0°</td>
<td>Adjacent to first spacer grid, Span 10</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>S1 - 90°</td>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>S1 - 225°</td>
<td></td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>S2 - 0°</td>
<td>Mid-span, Span 10</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>S2 - 90°</td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>S2 - 225°</td>
<td></td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>S3 - 0°</td>
<td>Adjacent to first spacer grid, Span 5</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>S3 - 90°</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>S3 - 225°</td>
<td></td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>S4 - 0°</td>
<td>Mid-span, Span 5</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>S4 - 90°</td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>S4 - 225°</td>
<td></td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Average 0°</td>
<td></td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>Average 90°</td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Average 225°</td>
<td></td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

All maximum strains during road Segment #1 at 872.4 – 902.3 seconds into the trip. This corresponds to travel on Poleline Road (dirt).
Measured Strains are Very Low Relative to the Elastic Limit of Zircaloy-4

MAXIMUM STRAIN TRUCK TEST ≈143 µin./in.
Irradiated rods would experience lower strains during truck test than unirradiated tube

- **Bending stiffness** (=EI) of high burnup irradiated Zircaloy-4 *with pellet-clad interaction* (per ORNL):
 \[E_{Irr} = \frac{EI}{Zirc4-irr} = 52 \text{ N-m}^2 \]
 \(E_{Zirc4-irr} = 83 - 101 \text{ GPa} \)

- **Bending stiffness** of unirradiated Zircaloy-4 tube:
 \[E_{Irr} = \frac{EI}{Zirc4-unirr} = 15.9 \text{ N-m}^2 \]
 \(E_{Zirc4-unirr} = 99 \text{ GPa} \)

- **Bending stiffness** Zircaloy-4 (irradiated rod/unirradiated tube) = \(\frac{52}{15.9} = 3.27 \)

This implies that for a given applied moment, strains on an irradiated rod would be approximately 0.3 \(\frac{1}{3.27} \) of those on an unirradiated Zircaloy-4 tube.

The maximum strain measured on the Zircaloy-4 tube in the truck test was 147\(\mu \text{m/m} \), so for the same applied loads, the strain on an irradiated rod would be:

\[147(15.9/52) = 45 \mu \text{m/m} \]
Rail Test Options

TN-32 cask transport from Pennsylvania to North Carolina

~ 650 km
Rail Test Options

- NLI-10/24 cask tests at Tri-City Railroad near PNNL

Augusta, Georgia
TCRY Railyard
Richland, Washington

- Controlled test environment
- Variety of track conditions
- Repeatability
Rail loadings less severe than truck loads
Fracture Mechanics & Fatigue Assessments Based Upon Experimentally-Measured Strains

<table>
<thead>
<tr>
<th>Crack depth/Zircaloy wall thickness</th>
<th>Applied stress intensity at crack tip, (MPa-Vm)</th>
<th>Lower bound Zircaloy-4 fracture toughness, (MPa-Vm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.4</td>
<td>20 - 30</td>
</tr>
<tr>
<td>0.50</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Stress amplitude based on experimentally measured maximum strain of 213 µin./in.
- Rail cycles:
 - Vibration cycles, rail, 2000-mile trip
 - Shock cycles, rail, 2000-mile trip