SCE Solar Photovoltaic Program (SPVP) O&M Overview

Rudy Perez
EPRI-Sandia Solar O&M Workshop
Palo Alto, California April 29, 2013
Existing Solar Photovoltaic Program (SPVP) Overview

- **Solar Photovoltaic Program (SPVP)**
 - Existing SPVP Program (250 MW UOG + 250 MW PPAs) approved June 2009

 - 250 MW of Utility-Owned Generation
 - Primarily 1 to 2 MW projects installed on commercial warehouse rooftops, with up to 10% (25 MW) ground-mount
 - 50 MW per year with an average cost of $3.97/Watt ($’11)*

 - 250 MW from IPP PV Solicitation
 - RAP coordinates annual solicitations for up to 50 MW per year for 5 years
 - Price capped at the utility LOCE, 26 cents per kWh
 - Other terms similar to UOG constraints

* Reasonableness cap approved in 2008 is $3.85/w dc installed. $3.97/w is escalated to 2011 dollars.
Petitions For Modification (PFM) to SPVP

- SPVP PFM filed 2/11/2011, Decision received 6/19/12
 - PFM requested:
 - 250 MW cut from the UOG and Original IPP SPVP (125 UOG/ 125 IPP) and create a new 250 MW revised IPP solicitation for competitively priced PV projects in the 1 – 20 MW range
 - Increase the ground-mount allotment to 20% in the UOG and Original IPP to accommodate existing obligations
 - Justifications for PFM
 - Estimated customer savings of $300M PVRR
 - Main SPVP Program goals have been met (i.e. PV market transformation)
 - SCE will continue to share lessons learned with the State and energy industry
 - Second PFM submitted 11/12 to further reduce program to 91 MW (current build)
SPVP Status

- UOG SPVP has 84.3 MW of projects completed and interconnected
 - 23 sites – 22 rooftops and 1 ground-mount (1 to 10 MW sites)
 - There is one project under construction – 6.7 MW Redlands #10
 - Dexus in Perris a 10 MW rooftop – largest single rooftop in the US.
 - Program to complete by YE 2013

SPVP 042 – Porterville
6.77 MWdc - 29,428
Trina Modules
33 acres
10 Satcon Inverters

SPVP 007 - PLD Redlands 3
3.20 MWdc - 10,840
SunPower Modules
446,000 Square ft.
5 Satcon Inverters
Data Needs – Who Needs What

- CAISO – Real-time and Settlements
- GCC – Real-time Operations
- ES&M – Scheduling and Settlements
- Field Engineering – Grid Planning and Development
- O&M – Asset Management and Operations
- Regulatory - Filings
- R&D – What if?
Data Acquisition System - Data Needs

- **SCADA – Site data acquisition**
 - 70 data points per inverter
 - 1 – 16 inverters per site
 - 2 weather stations at 6 sites
 - Meter data from all 25 sites

- **CAISO**
 - 27 data points per site
 - 4 seconds
 - 99.7% reliability
 - ECN connectivity with cyber security

- **Power Systems Controls**
 - 2 data points (Watts and VARs)
 - Weather Station data
 - 4 seconds
 - Circuit specific data

- **ES&M**
 - 2 Site data points (Watts and unit on-line status)
 - 1 Inverter Status point
 - Aggregated data

- **Engineering and R&D**
 - All data points
 - 1 second data
Panel Cleaning and Output Optimization

- 15-25% Degradation in panel output regained after cleaning – depending on panel and tilt. Within 4 weeks output was normally back to original degraded condition.

- Costs of rooftop cleanings estimated at $8,000/MW with some waste water environmental concerns.

- Economics do not seem to pan out if solar valued at $125/MWH. Pre-Summer cleaning (May) would provide maximum benefits.

- If so, when (which month) does it make the most sense to clean?

<table>
<thead>
<tr>
<th>Benefits of cleaning</th>
<th>Costs of cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Energy</td>
<td>- Labor</td>
</tr>
<tr>
<td>- Capacity</td>
<td>- Materials</td>
</tr>
<tr>
<td>- Green energy premium</td>
<td>- Waste water routing</td>
</tr>
<tr>
<td></td>
<td>- Scaffolding and / or manlift use</td>
</tr>
<tr>
<td></td>
<td>- Skylight protection</td>
</tr>
<tr>
<td></td>
<td>- Safety monitors</td>
</tr>
</tbody>
</table>

Note: Panels on left are especially dirty due to installation debris, and will be cleaned before project launch.
Rooftop Fire Concern and Corrective Action - Risk of Roof-top PV Fires Is Small but damage can be large

- Percentage of CA PV roof-top fires is ~0.2% (based upon incidents reported to fire departments).
- Cal-Fire November 2010 report listed 18 PV roof-top fires in CA over two years (2007-2008). Number of PV projects estimated in CA is >11,000 (data up to 2009).
- SCE risk of roof-top fires may be less due to utility grade design and construction, but our plants are unmanned (if buildings have tenants, then tenants could report a fire).
- May be some additional risk of unmanned plants if less time when people are around to inform the fire department of fires.
Corrective Action - Installation of Ground Fault Detection System

- Bender RCMS ground fault relays (field tested and proven for all SPVP technologies). 70 years of experience in ground faults.
- Bender telecommunication com unit to coordinate with Operations (Emerson system)
- Bender current transformers to detect ground faults
- Gigavac contactors to isolate fault upon relay trip
- Competitive bid control box
- Standard load center
- Standard control power transformer
- Arc Fault Detection System demos – Sensata, Eaton, Solar Bos, etc.
SPVP Integration Concerns

- Grid Control required Remote Control Disconnect Switch at each site
 - Cost of $125K per site
 - Control from Alhambra Control Center

- Penetration Level
 - Originally 15% circuit rule would have limited SPVP to 1-2 MW per circuit
 - Latest studies allow for up to 8 MW on a circuit if near the substation
 - Dedicated circuits needed if PV exceeds circuit capacity.
 - Costly ($100K/site) Remote Controlled Disconnect Switches current requirement. Inverters can be controlled via internet if deemed reliable

- Active Voltage Regulation –
 - Rule 21, Para D2a – prohibits the generator from any active voltage regulation –
 - Utilities don't want DG units to control voltage because our "not smart" grid has no way to monitor & control customer generation.
 - Customers will want to be paid for their services and we have no CPUC approved way to do this.
 - Possible solution is to have utility owned generation - even DG- to be treated and considered differently from customer or IPP units.

- System Disturbance Ride-through
 - Rule 21, Para D2b3 – has tight voltage limits which basically prevent any ride thru of a distribution system disturbance.
 - PV systems may have value during disturbances that we want to keep them on-line

- Harmonics
 - Concerns over harmonics from PV Inverters seemed to have allayed. Further study may be needed to guarantee this concern.

- Intermittency – SCE / NREL Study may allay concerns.
 - Overall distributed PV “smoothing effect” reduces impact

Smoothing Effect of Multiple PV
Backup Slides
SPVP O&M Overview

- **O&M Overview**
 - Roles and Responsibilities
 - Labor Requirements - PLA
 - Output and Scheduling Requirements

- **Performance Optimization**
 - Panel cleaning
 - Data Monitoring

- **Monitoring and Routine Maintenance**
 - Warranties – panels, inverters, etc.

- **Safety**
 - Roofs
 - Electrical

- **Key Liabilities**
 - Roof Maintenance
 - Insurance Concerns

- **Safety**
 - Roofs
 - Electrical

- **Key Liabilities**
 - Roof Maintenance
 - Insurance Concerns

- **Site relationship**

- **Construction Techniques to aid O&M**

Note: SCE budgets $30K/MW per year for O&M costs– excluding site lease costs.

Assumes an internal work force of 11 personnel
Rooftop O&M Challenges

- SCE responsible for repairing damage caused by Solar System as well as moving system out of the way for re-roofing activities.
- 20 to 25 year projects on 10 to 15 year warranty roofs is a concern.
- Roof Wind Loading leads to additional ballast weight concerns.
- Seismic Constraints in California are challenging.
The primary maintenance challenge is to balance the costs and potential benefits of inspection and ensuing repairs/replacements.

MAINTENANCE OVERVIEW

<table>
<thead>
<tr>
<th>Preventative (Pre-scheduled)</th>
<th>Forced (Something breaks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under Warranty</td>
<td>No Warranty</td>
</tr>
<tr>
<td>Check & replace faulty components before warranties expire</td>
<td>Balance benefits of preventative maintenance and cost of inspection</td>
</tr>
<tr>
<td>- Schedule component inspections one month before warranties expire*</td>
<td>- Minimize inspection cost (e.g. combine with annual cleaning)</td>
</tr>
<tr>
<td>- Comply with “active” maintenance provisions in inverter warranties*</td>
<td>- Establish cost effective inspection procedures. Typical inspection examples include:</td>
</tr>
<tr>
<td>- Establish a time-sensitive process for replacing faulty components</td>
<td>- Panel “I-V” curve trace</td>
</tr>
<tr>
<td></td>
<td>- Fuse replacement</td>
</tr>
<tr>
<td></td>
<td>- Visual inspection</td>
</tr>
<tr>
<td></td>
<td>- Inverter service</td>
</tr>
</tbody>
</table>

1. Know when PV installation behaves abnormally in real-time. Inverter Level Monitoring
2. Diagnose cause of abnormal behavior
3. Decide when (or if) to replace broken component

- Establish “active alerts” system which notifies operators of site production abnormalities
- Link notifications to 24-7, 365-day centralized monitoring authority
- In situations where the cause is not readily apparent, establish inspections dispatch
- Establish procedure for replacing/repairing damaged components based on C/B analysis
- *Cost Variables* (component(s) and labor)
 - *Benefit Variables* (Remaining project life; energy, capacity, and green premium lost)
Ensuring the safety of crew and equipment is the first priority during any maintenance or cleaning activity.

SAFETY OVERVIEW

Primary Risks

- Bi-directional energy flow on distribution grid downstream of PV rooftop sites
- Working on elevated surfaces (hazards with skylights, man-lifts, and unprotected roof edges)
- Numerous diverse parties (e.g. building tenants and potentially management, various SCE groups) require notification and training on PV safety issues
- Materials hazards during emergency (fire, earthquake)

Current Activities & Next Steps

- Update all distribution grid maps with PV generating sites (e.g. OMS and FIM).
- Continue robust site “Lockout Tagout” procedures.*
- Re-train all relevant crews on bi-directional flow “Lockout Tagout” safety procedures.
- Establish and install safety measures when applicable (e.g. skylight covers, temporary railings, harnesses) to prevent falls.
- Ensure consistent standards, site-specific safety documentation, and the transfer of knowledge from installation to maintenance crews during project “go-live” and interconnection.
- Establish and train a single SCE point of contact for all parties during an emergency.
- Educate local/city first responders and non-SCE building maintenance personnel about PV safety procedures and risks.
Construction Techniques to aid O&M Combiner Boxes

Original Design

- No fuse indicators
- Maintenance requires full inverter shutdown
- Must open every string disconnect to perform work
 - About 1400 in 60 boxes

Modified Design

- Blown fuse indicators
- Window in door for visibility
- Isolation switch
Construction Techniques to aid O&M Raceway Design - Conduit to Cable Tray

Original - Conduit

Modified - Cable Tray
Construction Techniques to aid O&M
Master Fuse Box (Recombiner)

Original Design
- Mechanical lugs
- No isolation

Modified Design
- Isolation switches both poles
- Crimped bolted lugs
- Bolted fuses
- Cable arrangement
Construction Techniques to aid O&M
Fuse Clips

Original Design

Spring Clip Fuses

Modified Design

Bolted Fuses
Construction Techniques to aid O&M Transformer

- Dry Type Exposed to Moisture
- Oil Filled

Original Design

Modified Design