Component Reliability in Photovoltaic Inverter Design

2013 Inverter Reliability Workshop
Sandia National Laboratories
Electric Power Research Institute (EPRI)

Janet Ma, Ph. D, Mgr., Design Quality
April, 2013, Santa Clara, CA, USA
Agenda

➢ Schneider Electric Solar Business introduction – 3min

➢ Component Reliability in PV Inverter Design – 15min
 ✓ A inverter standard usage model study
 ✓ Critical component stress level and useful life analysis
 ✓ Design for Reliability/ Maintainability and preventive service plan

➢ Q&A – 2min
Schneider Electric – the global specialist in energy management

24
billion € sales
(last twelve months)

41%
of sales in new economies
(last twelve months)

140,000+
people in 100+ countries

4–5%
of sales devoted to R&D

Balanced geographies – FY 2012 sales

North America 25%
Western Europe 30%
Asia Pacific 27%
Rest of World 18%

Diversified end markets – FY 2012 sales

Utilities & Infrastructure 25%
Industrial & machines 22%
Data centres 15%
Non-residential buildings 29%
Residential 9%
Solutions for solar energy

PV power plant
Our solution:
- Switch gear and circuit protection
- Power conversion substation
- Grid connection substation
- Tracking systems
- Inverters and array boxes
- Security
- Supervision and monitoring

Off-grid / Backup solar
Our solution:
- Multi-source management
- Inverters and chargers
- Circuit protection

Residential grid-tie solar
Our solution:
- Supervision and monitoring
- Maintenance and operation
- Inverters
- Distribution panels
- Circuit protection

Commercial and industrial buildings
Our solution:
- Switch gear and circuit protection
- Power conversion substation
- Grid connection substation
- Tracking systems
- Inverters and array boxes
- Security
Ottawa, Canada

Solution: GT500
System Size: 19 MW
Energy Production: 21,850 MWh/Year
Installation Type: Ground Mounted
Senftenberg, Germany

Solution: 62 PV Box (109 x GT630E)
System Size: 82MW
Installation Type: Ground Mounted
A Standard Usage Model of the PV Inverter

Inverter full power operation hours estimated at daily peak sun hours (average 6~8 hours)

The U.S. daily Peak Sun Hour / states

Source: Photovoltaic Design and Installation manual, 2003
A Standard Usage Model of the PV Inverter

Ambient temp varies from -60°C to +50°C (-76°F, +122°F)

Source: Photovoltaic Design and Installation manual, 2003
A Standard Usage Model of the PV Inverter

An example of a typical harsh location:

Peak sun hours > 11 hours Temperature > 40°C (104°F)

Source: Photovoltaics Design and Installation manual, 2003
A Standard Usage Model of the PV Inverter

An example of inverter operating ambient temperature range and inverter full power operating hours/day range:

<table>
<thead>
<tr>
<th>Item</th>
<th>Product Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Temp Limit (Full power)</td>
<td>-20 °C (-4°F)</td>
</tr>
<tr>
<td>High Temp Limit (Full power)</td>
<td>50 °C (+122°F)</td>
</tr>
<tr>
<td>Operating hour in power path</td>
<td>8 hrs/day</td>
</tr>
<tr>
<td>Operating hour in control/communication path</td>
<td>24 hrs/day</td>
</tr>
</tbody>
</table>
Large Commercial & Solar Farms Offer

PV Power plant application (> 1MW)
Inverter Function Blocks & Critical Components

Diagram of 3-phase inverter

- DC, AC and Power Conversion Blocks
 - IGBT power module, Main AC/DC breakers
 - DC Buss Caps, AC filter Caps
- Control & Communication Boards
- Auxiliaries
 - Cooling / Circulation fans, Heaters
- Customer interface
 - Display, keypad
Check Component Design Margin!

Component Stress Level Guideline

SL: Stress Level

Ensure enough design margin for long-term reliability
Optimizing Component Design Margin

Long-term reliability?

Cost?

Component Stress Level Examples

<table>
<thead>
<tr>
<th>Component</th>
<th>Maximum Stress Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGBT</td>
<td>$T_{jR\text{max}} -25°C$, 75% of V_{DSR}, 80% of V_{GSR}</td>
</tr>
<tr>
<td>Aluminum electrolytic capacitor</td>
<td>80% of V_R</td>
</tr>
<tr>
<td>Resistors (<2W)</td>
<td>50% of P_R, 75% of V_R</td>
</tr>
<tr>
<td>Power inductors</td>
<td>$T_{maxR} -20°C$</td>
</tr>
</tbody>
</table>
Inverter Requirements vs. Component Reliability

- Inverter useful life >20 years

Solution:
- Analyze component useful life & enforce DFS
- Implement preventive maintenance plan

- Harsh inverter application environment
 - Temperature / Humidity
 - Dust / UV

Solution:
- Using fans, heaters, filters, … etc and control logic to create a local environment to ensure component design margin for long term reliability

- Component relatively short life expectance

- Component spec not directly meeting harsh application
Critical Component Useful Life Prediction

IGBT power module

- Life expectancy of the solder joint:
 - 40,000 cycles at $\Delta T_c=50^\circ C$,
 (Typical worst $\Delta T_c =45^\circ C$ in our application)

- Useful life prediction:
 - $\frac{40,000}{5 \text{ (cycle/day)}/365} = 21.9 \text{ (years)} > PV \text{ inverter service life (20 years)}$
Critical Component Useful Life Prediction

DC Buss Capacitor

- Life expectancy:
 100,000 hours
 @ nominal voltage and specified internal hotspot temperature.
 40,000 hours
 When temperature is 10°C higher than spec

Useful life prediction:
 100,000/8/365=34 (years)
 When use it in the spec.
 40,000/8/365=13.7 (years)
 When temp is 10°C higher
Critical Component Useful Life Prediction

Main DC contactor

• Electrical durability spec.
 30,000 operations at 2050 A maximum and 1000 V

• DVT (Design Verification Test)
 Typical application:
 (310V, 1652.3A) to (480V, 1070A), one operation per day

• Life expectancy:
 30,000/2/365=41 years at Typical application
 Life expectancy > Product service life (20 years)

• Don’t need to replace it during the product service life.
Critical Component Useful Life Prediction

Cooling Fans for power bridge

• Spec.
 • Operating ambient temperature @ max. voltage: -25°C+60°C
 • Service life (L10): 57323h @40°C, 36591h @60°C
 • FIT:313

• DVT (Design Verification Test)
 • Typical application temperature 45.8°C
 • Worst application temperature 56.5°C

• Life expectancy: 8hrs usage/day @60°C
 36591/8/365=12.5 (years) @60°C < Product service life (20 years)

• Replace it at year 10.
Critical Component Useful Life Prediction

Fiber Optic Transmitter and Receivers

- **Estimated life expectancy:**
 > 10 years at 40°C and 60 mA
 Operating temp: - 40°C to +85°C

- **DVT (Design Verification Test)**
 Typical application: 70.6°C and 13.6mA

- Life expectancy < Product service life (20 years)

- Expected to be replaced before year 10.
DFS and Preventive Maintenance

- Design for Serviceability (DFS) to reduce Mean Time To Repair
- Preventive maintenance plan based on the useful life analysis of the critical components

A Example of PM parts list

<table>
<thead>
<tr>
<th>Replacement parts</th>
<th>At year 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling and circulating fans</td>
<td>X</td>
</tr>
<tr>
<td>DC Buss Cap Assemblies</td>
<td>X</td>
</tr>
<tr>
<td>Gate Driver boards</td>
<td>X</td>
</tr>
<tr>
<td>Front panel, control board</td>
<td>X</td>
</tr>
</tbody>
</table>
Designing robust solar products

Key aspects of design for quality & reliability

- WCA (Worst Case Analysis)
- Useful life analysis
- Design standard check
- D-FMEA (Design Failure Modes, Effects Analysis)
- A-FMEA (Application Failure Modes, Effects Analysis)
- FIT/MTBF (Failure In Time/Mean Time Between Failures) prediction
- List of preventive maintenance parts for field serviceable products
- Reliability testing

Types of reliability testing during product development cycle

- THB (Temperature Humidity Bias)
- Salt-fog testing
- HALT (Highly Accelerated Life Test)
- MEOST (Multiple Environmental Over Stress Testing)
- Custom reliability testing: Used for our large three phase inverters tested in walk-in chamber

Product life cycle reliability testing

- Qualification of major design improvements
- Continuous reliability monitoring to ensure the same level of reliability throughout the product life cycle
Conclusion

Inverter reliability relies on component reliability

We provide our customers with a reliable 3-ph inverter with 20 years service life by:

- Ensuring design margin in both inverter and components for long term reliability
- Adopting Design for Serviceability (DFS) to reduce down time
- Implementing preventive maintenance plan based on the useful life analysis of the critical components