Model Validation Methodology and Results

Jeff Roche

Presented at the 2013 Sandia PV Performance Modeling Workshop
Santa Clara, CA. May 1-2, 2013
Published by Sandia National Laboratories with the Permission of the Author
Why Validation is Important

• To prove that you can accurately model across a wide range of products and geographical locations
• Performance prediction key input in project finance models
 – Proven accuracy builds internal and investor confidence in performance predictions
• Important feedback mechanism for testing model changes
SunPower’s Model Validation Program

• As a project developer, SunPower has access to a significant amount of production data:
 – Hundreds of operating projects around the world generating production data and collecting meteorological data
 – A central server collecting data at high frequency
• Model validation efforts over past 5 years focused on comparing modeled production to real-world production:
 1. Simulate (using PVSim) first year production using measured meteorological data
 2. Compare simulated production to measured production at the given site
• Recently developed a suite of tools to significantly streamline and improve this process
• This suite of tools has enabled us to grow the number of sites that we are using in our program from about 30 to 100 over the past 2 years
Model Validation Process

1. Choosing sites:
 - Ensure that the study includes the suite of SunPower module and mounting products
 - Select diverse geographic locations
 - Rule out sites with major issues in first year of operation (data outages, technical issues that can’t be modeled, etc.)

2. Gathering simulation inputs:
 - Use as-built drawings to generate simulation inputs

3. Retrieving meteorological and production data
Model Validation Process

4. Data quality checking:
 - Only compare to measured conditions we’d expect the tool to simulate
 - Use an internally-developed tool to remove or fix anomalies in the data:
 - Inverter outages
 - Data acquisition outages
 - Fix time shifts
Model Validation Process

5. Process results
 - Key metric: % difference in annual yield between measured and modeled
 - Roll-up results in many other ways to investigate, for example:
 • Seasonal differences
 • Regional results
 • Time series results
Results

• On average, annual energy production is 1.3% greater than predicted for SunPower modules and 1.0% greater than predicted across all module manufacturers compared.
Lessons Learned & Next Steps

- Soiling & snow cover a significant source of uncertainty
 - Effort underway to improve and expand soiling & snow cover model
- Further expansion of compared sites:
 - More utility-scale projects to validate dynamic AC loss model
 - Residential projects