Update on Solar Program Activities

February 14, 2011
DISCLAIMER: The purpose of this presentation is to update attendees on activities within the Solar Energy Technologies Program. This presentation does not represent, reflect, or endorse an existing, planned, or proposed policy of the U.S. Government, including but not limited to the U.S. Department of Energy. The U.S. Department of Energy does not guarantee the accuracy, relevance, timeliness, or completeness of information herein, and does not endorse any sources used to obtain this information. As such, this presentation is not subject to the Information Quality Act and implementing regulations and guidelines.
1. Summary of $1/W Workshop from August 2010

2. Current Request for Information (RFI)

3. Questions
Summary of $1/W Workshop

Date: August 11th and 12th, 2010

Attendees: 86 total; 11 for Power Electronics breakout (mix from Federal Govt., academia, industry)

Format: Introductory comments; breakout sessions; plenary discussion to discuss results

$1/watt installed by 2017: Defining the Objective

- By 2017: Demonstration of all key components and installation methods in systems at least 5MW in size and initial production orders for equipment capable of delivering $1/watt installed systems in 2017
- Includes all components, equipment and installation processes to produce grid compatible electricity
- Target could be met with systems installed on the ground or on buildings
- Earth-abundant materials
- Recyclable components
- Meets all applicable safety and environmental standards

From the $1/W White Paper
Summary of $1/W Workshop

System Installed Price ($/W)

- **$3.40** in 2010:
 - Module: $1.70
 - BOS/Installation: $1.48
 - Power Electronics: $0.22

- **$2.20** in 2016:
 - Module: $1.05
 - BOS/Installation: $0.97
 - Power Electronics: $0.18

- **$1.00** in $1/W Watt:
 - Module: $0.50
 - BOS/Installation: $0.40
 - Power Electronics: $0.10

From the $1/W White Paper
Summary

Centralized Power Electronics

<table>
<thead>
<tr>
<th>Goals</th>
<th>Key Take-Aways</th>
</tr>
</thead>
</table>
| **Reduce first cost** | - Economies of scale could reduce inverter cost 5¢/watt.
- Higher frequency switching could reduce cost an additional 3-4¢/watt. |
| **Improve reliability to 30 years**| - Maintenance contracts could be cheaper than designing inverter for higher reliability.
- Manufacturers know what fails – and solder joint failures have multiple solutions. |
| **Integrate smart grid functionality** | - Adding reactive power capability is relatively inexpensive and recommended.
- Adding ability to manage storage may cost 6-7¢/watt for a bi-directional converter and is a nice to have extra. |
| **Understand Implications for system cost** | - Operating at a higher voltage will drive out system wire cost.
- Higher frequency switching will reduce converter size and weight. |
Decentralized Power Electronics

<table>
<thead>
<tr>
<th>Goals</th>
<th>Key Take-Aways</th>
</tr>
</thead>
</table>
| **Reduce first cost** | - Need high volume production to drive down cost.
- Limited availability of high voltage switches.
- Need to integrate components to achieve scale manufacturing.
- No 3-phase micro-inverters available for utility-scale applications. |
| **Improve reliability to 30 years** | - Limited field experience - need tools to understand/predict failures and monitoring to better identify failure issues. |
| **Integrate smart grid functionality** | - Challenge for micro-inverters is coordinating thousands of converters.
- Reactive power relatively easy to add.
- Storage solutions not clear. |
| **Understand Implications for system cost** | - Decentralized power electronics could increase system yield 4-8% reducing all system components and related costs (including inverter).
- 3-phase AC system results in lower cost of wiring, protection features and labor. |
http://www1.eere.energy.gov/solar/financial_opportunities.html
Title: $1/W PV Systems: Solar Energy Grid Integration Systems, Advanced Concepts

Subject: DOE is requesting information on Solar Energy Grid Integration Systems, Advanced Concepts (SEGIS-AC) and how changes in power electronics impact the cost of the PV system as a whole.

Due Date: February 4, 2011
The RFI seeks feedback on:

a) **Investment Amount**
 $7-9M annually for three years ($24-27M), subject to annual appropriations

b) **Topic Areas**
 (1) *Smart-Grid Functionality*
 (2) *Using Power Electronics to Address Balance of System Costs*

c) **Evaluation Criteria**
SEGIS-AC Meeting, February 9th, Washington DC

Please contact
kristen.nicole@ee.doe.gov
Questions?

Kevin Lynn
Acting Lead for Systems Integration
kevin.lynn@ee.doe.gov
202.586.1044

Mike Cliggett
Technology Development Manager, Technology Validation Project
michael.cliggett@ee.doe.gov
202.586.3626

Kristen Nicole
System Integration Analyst
kristen.nicole@ee.doe.gov
202.287.1781