Existing Codes and Standards

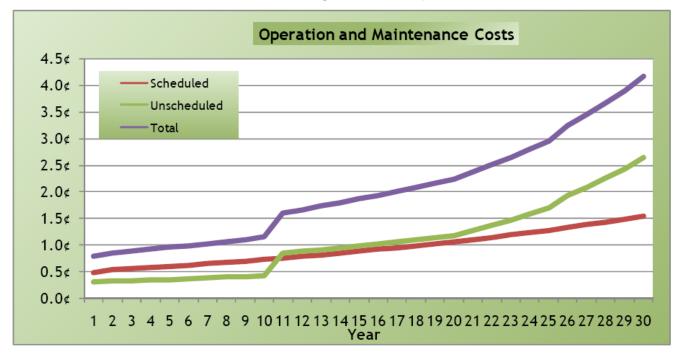
Utility-Scale Grid-Tied PV Inverter Workshop

January 27-28, 2011 Albuquerque, NM

Greg Ball BEW Engineering

BEW - ENGINEERING AND CONSULTING ACTIVITIES

- Project feasibility studies
- Technical due diligence
- Independent Bank's Engineering
- Owner's Engineering
- PV system design engineering
- "Bankability" reviews including utility scale inverters
- Energy and performance modeling
- Utility grid interconnection studies, model and data preparation
- Component design and prototyping
- Intellectual property development
- Standards development and compliance assessment
- Co-convenor for TC82 Working Group 6, Balance of System


BEW RELIABILITY EVALUATION

- Field history
- Traditional reliability standards
 - MIL STD 217
 - Telcordia SS
- Halt Testing
- FMEA
- PV plant O&M modeling assumes parts, not unit replacement
 - Instead of replacing inverter after 5, 10, 12 years
 - Partial, component and sub-assemblies, after 10 years
 - Full unit after 20 years

OPERATIONS AND MAINTENANCE MODEL

- Developed by BEW
 - Detailed operations and maintenance cost model (\$/kWhr)
 - Bottoms-up method with component and activity details
 - Time to fail and availability assumptions included

EXISTING PV INVERTER RELIABILITY STANDARDS

STANDARDS WITH SOME RELEVANCE

- ISO 3741
- ISO 3744
- ISO 7779
- ISO 9001
- ISO 9296
- ISO 10302
- IEC 60028-2-27
- IEC 60068-2-31
- IEC 60068-2-32
- IEC 60068-2-64
- IEC 60529
- IEC 60950-1
- IEC 61000
- IEC 61000-3-2
- IEC 61000-4-2
- IEC 61000-4-3

- IEC 61000-4-4
- IEC 61000-4-5
- IEC 61000-4-6
- IEC 61000-4-11
- IEC 61000-4-12
- IEC 62040-1-1
- IEC 61209
- IEC 61215
- IEC 62093
- EN 50116
- EN 55022
- EN 55024
- TELCORDIA
- GR-1274-CO
- SR332
- EIA/JESD22-A101

- JESD22-A108
- JESD22-A114
- JESD47
- UL 1741
- IPC J-STD-001
- IPC/ECA J-STD-002
- IPC/JEDEC J-STD-020
- IPC/JEDEC J-STD-033
- IPC-T-50
- IPC-A-610
- IPC-9591
- IPC-9592A
- IPC-9701
- CAN/CSA C22.2 No. 60950-1
- Others.....

WHAT EXISTS FOR INVERTERS?

- UL 1741 and IEC 62109 Safety Standards
 - Not reliability standards BUT some qualification and reliability addressed through safety requirements
 - Addresses failure vs. degradation over time for protective elements
 - If something is going to fail, fail safely translates to some redundant elements
 - There is the option to add some level of reliability or qualification testing to these documents (per Tim Z)
- IEC 62093, MIL-Specs for components, JDEC Standards, Telcordia, IPC 9592A

What can we learn from module standards?

IEC 61215

- Crystalline silicon terrestrial photovoltaic (PV) modules –
 Design qualification and type approval. 2nd edition, 2005.
- Equivalent standards for other PV:
 - IEC 61646 Thin film
 - IEC 62109 CPV
- IEC 61730 Safety Standard, references the qualification standards
- Scope: Design qualification and type approval of terrestrial photovoltaic modules suitable for long-term operation in general open air climates
- Objective: Determine electrical/thermal characteristics and demonstrate that the module is capable of withstanding prolonged exposure in climates

IEC 62093 - SCOPE

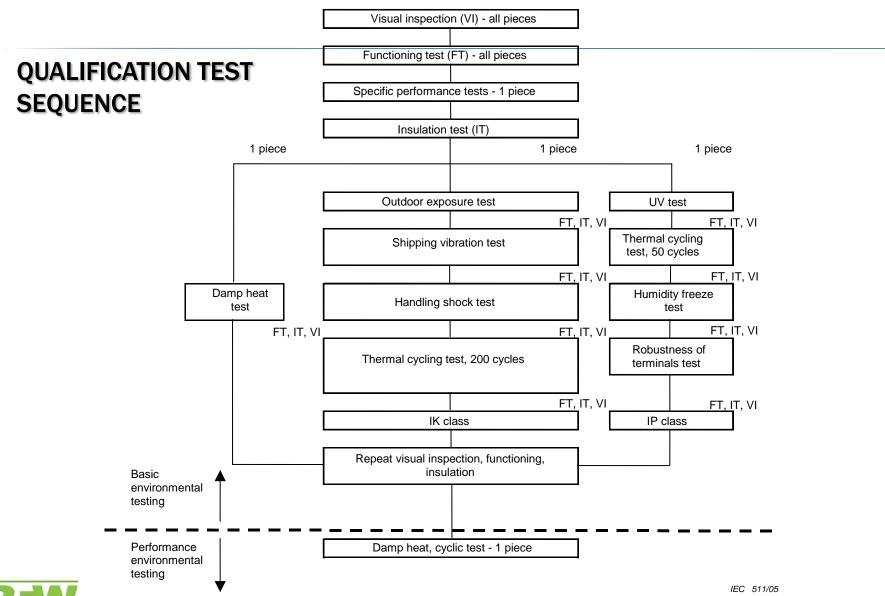
- Balance of system components for photovoltaic systems – Design qualification natural environments. 1st edition, 2005
- BOS components for PV systems, suitable for indoor our outdoor environments, protected or unprotected
 - Based on module standards IEC 61215 and 61646
 - Modified to reflect features of BOS components
 - Added dust, fungus, insects, shipping vibration, shock, and protection class (mechanical and environmental)
 - Covers a wide variety of equipment in addition to inverters, including batteries and charge controllers

IEC 62093 – OBJECTIVES

- Test sequence to determine performance characteristics
- Demonstrate components capable of maintaining performance after exposure to expected environmental conditions
 - Within reasonable constraints of cost and time
- "The actual life expectancy of components so qualified will depend on their design, their environment and the system conditions under which they are operated."
- No claims on reliability (lifetime)

IEC 62093 – REFERENCES

- References numerous IEC standards for general environmental testing, i.e. cross industry
 - IEC 60068 Series covering:
 - Vibrations, robustness of terminations, shock, damp heat (steady state and cyclic, hammer, temperature/humidity chambers.
 - 60721 Classification of environmental conditions
 - 62262 Enclosure protection from external mechanical impacts (IK code)
 - 60529 Enclosure protection from environment (IP code) -- similar to NEMA rating
- Report per requirements of ISO/IEC 17025
 - General requirements for the competence of testing and calibration laboratories



IEC 62093 - TEST PROCEDURES

- Visual inspection
- Functioning tests
- Specific performance tests for components
- Insulation test
- Outdoor exposure test
- Protection against mechanical impacts (IKcode)
- Protection against dust, water and foreign bodies (IPcode)

- Shipping vibration test
- Shock test
- UV test
- Thermal cycling test
- Humidity-freeze test
- Damp heat test
- Robustness of terminals test
- Damp heat, cyclic test

WHAT NEXT?

 What are the gaps in codes and standards specific to inverters and power electronics, or, what should inverter companies be doing outside of existing standards?

IPC 9592A – Power conversion industry example

IPC 9592A

- Requirements for Power Conversion Devices for the Computer and Telecommunications Industries, 2010
- Scope: ac to dc and dc to dc modules, converters and power supplies
 - Specific requirement and methods to meet the performance parameters
 - Design for Reliability,
 - Design Qualification Testing,
 - Manufacturing Conformance Testing, and
 - Quality Processes.
- Purpose create a set of consistent specifications and methods to assure suitability, quality, safety and reliability of PCDs for the electronics industry

IPC 9592A – WHAT'S IN IT?

- Extensive list of qualification tests list reads like a combination of 62109 (electrical disturbance) and 62093 (environmental) tests
- Halt Testing
- Design for Reliability
 - FIT reliability prediction calculated using Telcordia Technologies SR-332
 - Component selection
 - Corrosion testing
 - Derating guidelines

IPC 9592A – WHAT'S IN IT?

- Design Failure Modes and Effects Analysis (DFMEA)
 - Recognize and evaluate the potential failure modes of each component in a product and its effects on the product.
 - Identify actions that could eliminate or reduce the chance of the potential failure occurring.
 - Document the process for improvement of future designs.
- Quality Processes
 - Statistical process control
 - Corrective action process
 - Calibration
 - Continuous improvement
- Manufacturing Conformance Testing

NEXT STEPS?

- Codes and standards can be viewed as cost constraints and a source for reliability improvement. How can these opposing elements be better synchronized?
- Qualification testing of some level should be applied.
 Module manufacturers didn't like it at first but the value is clear
- Create a standard with basic minimal qualification/reliability requirements with criteria of
 - improving performance and customer confidence, but
 - limiting imposed cost constraints
 - allowing innovation in internal approaches for companies to improve, stand out

IEC 62093 REVISION

- Standard is in "maintenance" cycle, for revision in TC82 Working Group 6
- Not a best seller
 - Sales from 2005 to 1st Q 2010 = 30 copies
- Suffers from poor name Design Qualification Natural Environments???
- Spread too thin to encompass charge controllers, batteries, etc.
- Written with small inverter mindset.
- Ad hoc committee formed to review and make recommendations
 - Increase it's value, acceptance, usage using 61215 model
 - Side by side review with IPC 9592A for more meat
 - Careful attention to small vs. large inverter protocols

THANK YOU!

FOR MORE INFORMATION:

GREG.BALL@BEWENGINEERING.COM

415-489-9494

