Scalable Micro-grid for a Safe, Secure, Efficient, and Cost-effective Electric Power Infrastructure

Sandia National Laboratories
Anthony Lentine, Jeff Nelson, Scott Kuszmaul, Sig Gonzales, Steven Goldsmith, Dave Schoenwald, Shannon Spires, Steven Glover, Justin Ford, Greg Nielson, Murat Okandan, Alan Hsu

Problem

Motivation

- Reduce Reliance on Fossil Fuels
- Climate change (coal electric power plants are the largest contributor)
- Foreign fuel supplies (oil heating conversion and plug-in hybrid vehicles)
- Electric demand growth of 5.75% (exp. expected 19% from 2006 to 2016 [7])
 - Shortage likely in both generation (+4%) and transmission (+7%) in 2016 (increases Markets!)

Distributed Energy Resources (DER) = major part of the solution
- Note: wind turbine power generally centralized and often remote
 - Reduced lines in transmission if generation geographically close to consumption
 - Reduced large capital expenses for plant and transmission lines
 - Increased security by decentralization of incipient points

- Today’s Grid will not allow high penetration of DER (>50%)
 - Stability with high renewable power penetration because of intermittency
 - Distribution network is unidirectional and passive, cannot fully use DER for capacity or reliability
 - Distribution network cannot balance generation, storage, and loads
 - The loads demand power, the generation supplies it (occasionally) turns off the power

- Requires Nothing Less than a New Grid Infrastructure!

Scheduled Generation

The Existing Grid

- Mesh based transmission layer
 - Sometimes controls and monitoring (SCADA or supervisory control and data acquisition)
 - current, voltage, power factor, etc.
 - Fossil Fuel has ‘inherent storage’

- Unidirectional passive tree-like distribution layer
 - Little to no monitoring
 - Little to no redundancy
 - Little to no controls
 - Little to no storage

- The home
 - Monitoring of usage (e.g., Google power meter)
 - No closed loop control
 - No storage in grid-connected systems

The Future Grid Paradigm

- Supply no longer predictable
- Must control loads, storage
- Must have smart network

Solutions to accepting a large penetration of distributed energy resources

- Lots of storage, located on-site with renewable energy
- Use economic, but potentially makes renewable energy output predictable
- Grid compatibility issues if resilience and businesses supply power to the grid in a big way.

Our goal is to move to the right $ Advanced Power Control Architectures

- An intelligent green-grid that controls bi-directional power-flow to reduce the need for storage and peaking generation

Global Warming Projections

Future intelligent grid

- Generation/Transmission Layer (mesh)
- Distribution Substation
- To other consumers
- Distribution Layer
- To other homes
- Micro-system Sensor Communications Modules

Approach (cont.)

Focus of this LDRD

- Advanced controls and architecture
 - High penetration of DER
 - Efficiency
 - Reliability
 - Security
 - Safety
 - Economics
 - Reduction in peaking central generation and storage
 - Control of loads, and storage

- Microsystems for remote sensing and communications
 - Change-detect blind distribution network into microgrids that are:
 - Distributed
 - Smart (have information to make decisions)
 - Active (load control)

- Representative hardware demonstration/simulation at the Distributed Energy Technology Lab (DETL) at Sandia

Results

LDRD Control & Power Architecture

- Why Scalable Microgrid:
 - Control, generation, use in three geographic areas
 - Reliability = quick loss of local resources in the event of a grid failure (regulatory issues left)
 - Scalability = few homes to neighborhoods to cities

- Why Distributed Controls:
 - Reliability = fast time response
 - Resiliency = redundant information
 - Security = no central point of failure
 - Cohesive management of generation, storage, and load.

- If successful will it be adopted? (It’s a big change!)
 - Depends on the success of the U.S. Industry approaches (IUSA)
 - 1-2B people without electricity in the world (Greenfield application?)

First Year Accomplishments

- Models developed, simulations in progress

LDRD Requirements for Sensing for intelligently managing the future grid

Features:

- Scalable at multiple field sites and multiple points within the network
- Small, cheap (High throughput)
- Long lifetime (30 years)
- Robust (outdoor) environment
- Physical Security

Containers:

- Communications... must be secure too (cybersecurity)
- Power harvesting (from lines)
- Power backup (4 days)
- Low power, Long lifetime
- Adaptable
 - Physical location information
 - New Information
- Sensing
 - Physical Electrical (Current, Voltage, Frequency, Direction)
 - Environmental (Temperature, Solar irradiance)
- Strain
- Fault Isolation
- Signage Discovery

Significance

‘Smart Grid’: It’s everywhere!

- Smart Grid Industrial Focus = Focus on Operational Efficiency
 - Advanced Meter Infrastructure (AMI) or ‘Smart Meter

- Autonomic Control System (ACS) (Amigo or ‘Smart Power"
 - A communications gateway between the Home Area Network (HAN) and the Utility

- A data logger/collector, giving real-time and archival information on time-dependent Electricity usage

- Home Area Network
 - Collection of ‘Smart Appliances’ respond to Utility signals or use programmed or real-time commands
 - Sensing to let users know more information about their electricity usage

- Home Area Network
 - Data logger/collector, giving real-time and archival information on time-dependent Electricity usage

- Demand Response
 - Dispatch load in response to generation shortage

- Controlled through Utility or third party (or generation sometimes)

First Year Accomplishments

- In-home automated (USSA development)
 - Power Monitoring and Control
 - Secure Communications
 - RS Optical, Power-law
 - Integration of cost, and new with high value Power Electronics

- Key innovation areas
 - Power Harvesting and Backup
 - Security Communications
 - RS Optical, Power-law
 - Integration of cost, and new with high value Power Electronics

- In-home automated (USSA development)
 - Power Monitoring and Control
 - Secure Communications
 - RS Optical, Power-law
 - Integration of cost, and new with high value Power Electronics

- Key innovation areas
 - Power Harvesting and Backup
 - Security Communications
 - RS Optical, Power-law
 - Integration of cost, and new with high value Power Electronics

- In-home automated (USSA development)
 - Power Monitoring and Control
 - Secure Communications
 - RS Optical, Power-law
 - Integration of cost, and new with high value Power Electronics