Reliability Considerations for Large Off-Shore Blades

Kyle K. Wetzel
Wetzel Engineering, Inc.
Lawrence, Kansas USA
kkw@WetzelEngineering.com
www.WetzelEngineering.com

Sandia Reliability Workshop
03 August 2011
Albuquerque, New Mexico
WEI 5-year Experience

• Blades in production at our clients:
 – 3.2, 4.2, 10, 13, 43, 45.3, 50.5, 56m

• Additional blades in design/development:
 – 26.3, 43.5, 48, 54, 55, 60, 73.8, 80, 90-100m

• Forensics work for blade failures (not our designs!)
 – Problems are growing as blade size grows
 – 20% of blades returned for warranty work
 – Blades are the worst components in a wind turbine
WEI 5-year Experience

Copyright © 2011 Wetzel Engineering, Inc.
Reliability: Engineering –vs– Manufacturing

• Field failures of blades are almost always blamed on manufacturing failures
• But do blade design and engineering fail to reflect the realities of blade manufacturing?
• Improving blade reliability requires that the engineering and manufacturing reflect common specifications.
Common Blade Manufacturing Issues

• Adhesive Bond Defects
 – Thickness out of Tolerance
 – Voids (to the point of missing adhesive)

• Laminate Defects
 – Ply Wrinkling & Waviness
 – Misplaced Laminates
 – Fiber Orientation Issues

• Fiber Fraction Problems
 – Resin-Rich Regions
 – Dry Spots

• Etc.

Nominally 5mm Bond Gap Measured at 15mm
Worsening Problems With Larger Blades

• The tolerance requirements do not change as blades scale, so on a percentage basis, the tolerances become tighter
 – Adhesive bonds
 – Material placement
 – Fiber waviness and wrinkling
 – Laminate Thickness
Worsening Problems With Larger Blades

• Tolerances on molds are becoming worse as the molds grow in size
• Biggest problems we see are growing out-of-plane and in-plane mismatch between the two main shells
• Long Molds are more flexible
• This leads to larger bond gaps on blind bonds
Worsening Problems
With Larger Blades

• Thicker laminates mean
 – more dimensional variation in thickness, which translates into more variation in bond gaps
 – Variation in resin content – more resin rich regions, fabric floating, waviness, voids, etc.

• Thicker sandwich core construction –
 – quality problems infusing very thick core
 – High interlaminar shear and delamination problems
Challenge of Off-Shore

- Blades are not easily repaired
- Reliability must be improved dramatically for off-shore machines
Worsening Problems
With Larger Blades
Worsening Problems With Larger Blades
Worsening Problems With Larger Blades
Worsening Problems
With Larger Blades
Worsening Problems
With Larger Blades

1/4700 Leading edge
108x30

Copyright © 2011 Wetzel Engineering, Inc.
Worsening Problems
With Larger Blades
Worsening Problems With Larger Blades

Severe Delamination

Cracked Lam
Worsening Problems
With Larger Blades
Worsening Problems With Larger Blades
Evolution In Design for Large Off-Shore Blades

• Industry can design a conventional blade for an off-shore machine
• Based on prior research and experience with aviation systems, we expect that
 • Such blades will present severe manufacturing challenges
 • Excessively thick UD laminates with degraded properties
 • Excess quantities of balsa or foam core for buckling
 • Tolerance and matching issues during assembly of extremely large parts
 • Adhesive bond quality issues
• The weights of such blades will prove to be a source of uniquely high fatigue on the rest of the turbine system.

Copyright © 2011 Wetzel Engineering, Inc.
Concepts for Large Blades

- Use of multiple spars, stringers, and ribs to produce a structure of significantly reduced weight and improved quality
- Modular approach to manufacturing
 - Parts are molded in more Manageable Sizes – reduces manufacturing overhead
 - Parts are assembled in open assembly fixtures
 - Bonds can be inspected before final assembly
 - Higher quality control
 - Lends itself to either factory assembly or field assembly
Evolution In Design for Large Off-Shore Blades

<table>
<thead>
<tr>
<th></th>
<th>Conventional Wind Turbine Blade Design</th>
<th>Alternative Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Load Carrying Structure</td>
<td>1 or 2 Spars centrally located</td>
<td>Several spars more distributed</td>
</tr>
<tr>
<td>Outboard Skins</td>
<td>Thin skins of sandwich core construction</td>
<td>Thinner skins with less core and strategic use of light-weight carbon stringers and ribs to prevent buckling</td>
</tr>
<tr>
<td>Inboard Skins</td>
<td>Thick skins for transferring loads from spars to root</td>
<td>Direct transfer of load from multiple spars to root</td>
</tr>
<tr>
<td>Construction Approach</td>
<td>A few full-length parts</td>
<td>Multiple shorter parts assembled in the factory</td>
</tr>
</tbody>
</table>
Evolution In Design

• Alternatively – borrow from aircraft wing design
• Load is carried by a larger number of spars and stringers
 – Design is more fault tolerant
 – Strength and buckling both addressed more efficiently
• Buckling is resisted with much less weight using ribs and stringers
• The manufacturing is more modular
 – Smaller mold parts produce higher tolerances and higher QC and QA
 – More versatility regarding factory and field assembly
Evolution In Design
Evolution In Design
To Better Blades

Kyle K. Wetzel
Wetzel Engineering, Inc.
Lawrence, Kansas USA
kkw@WetzelEngineering.com
www.WetzelEngineering.com
1-785-856-0162

Copyright © 2011 Wetzel Engineering, Inc.