Energy and Climate
Energy and ClimateECAbout ECFacilitiesAdvanced Materials LaboratorySandia Researchers Win CSP:ELEMENTS Funding Award

Sandia Researchers Win CSP:ELEMENTS Funding Award

On May 21st, the Department of Energy SunShot Initiative announced $10M for six new R&D projects that will advance innovative concentrating solar power (CSP) technologies. The Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP:ELEMENTS) funding program supports developing thermochemical energy storage (TCES) systems that can validate a cost of ≤ $15/kWhth and operate at temperatures ≥ 650 °C (> 1200 °F).

A schematic of the proposed reactor system. The metal oxides (MOs) [1] absorb/capture concentrated solar energy in [2]. Because the energy is captured in chemical bonds, it can be stored for long periods [3] and released at need [4] for electricity generation [5]. MOs are particularly suitable for the Air Brayton power cycle because of their high temperature range and the use of pressurized air, in which the air is both the reactant for the reoxidation step and the heat-transfer-fluid input directly into the Brayton-cycle turbine.

A schematic of the proposed reactor system. The metal oxides (MOs) [1] absorb/capture concentrated solar energy in [2]. Because the energy is captured in chemical bonds, it can be stored for long periods [3] and released at need [4] for electricity generation [5]. MOs are particularly suitable for the Air Brayton power cycle because of their high temperature range and the use of pressurized air, in which the air is both the reactant for the reoxidation step and the heat-transfer-fluid input directly into the Brayton-cycle turbine.

TCES presents opportunities for storing the sun’s energy at high densities in the form of chemical bonds (thus using less storage material) for use in utility-scale CSP electricity generation. “By improving energy storage technologies for concentrating solar power systems, we can enhance our ability to provide clean and reliable solar power, even when the sun is not shining,” said Energy Secretary Ernest Moniz.

The Sandia-led CSP:ELEMENTS-funded project, “PROMOTES” ([High] Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage), proposes a system that concentrates sunlight onto a falling curtain of particles called perovskites. These perovskites utilize the heat to undergo a reaction which “stores” the concentrated solar thermal energy in chemical bonds. The perovskites are then stored until the heat is required. Exposing the perovskites to air reverses the chemical reaction, releasing the stored solar heat energy for use in a very efficient air-Brayton electric power generation system.

The PROMOTES research team members and key participants include:

  • Sandia National Laboratories: Drs. James Miller, Andrea Ambrosini, and Clifford Ho.
  • Georgia Institute of Technology: Profs. Peter Loutzenhiser and Sheldon Jeter.
  • King Saud University: Prof. Hany Al-Ansary.
  • Arizona State University: Prof. Ellen Stechel.

The Sandia-led PROMOTES project will leverage Sandia’s deep experience and knowledge base in metal-oxide thermochemistry and solar particle receivers/reactor work currently funded by the DOE SunShot Initiative to methodically design, develop, characterize, and demonstrate a robust and innovative storage cycle based on newly developed redox-active metal oxides. Sandia and collaborators will develop, characterize, and demonstrate a first-of-its-kind 100 kWth particle-based TCES system for direct integration with combined-cycle Air Brayton power generator based on the endothermic reduction and exothermic reoxidation of our developed metal-oxide materials.

Read the EERE funding award statement.

Read the EERE press release.

Comments are closed.